
TRS Documentation

Linaro

Apr 19, 2023

ABOUT

1 About TRS 3
1.1 Goals and key properties . 3
1.2 Firmware Software Components . 3
1.3 Releases . 4

2 Getting started 5

3 Manual installation 7
3.1 1. Install repo . 7
3.2 2. Getting the source code . 7
3.3 3. Installing prerequisites . 8
3.4 4. Building . 10
3.5 5. Target specific installation . 11
3.6 5. Tips and tricks . 11

4 Docker Install 13
4.1 Container Configuration . 13
4.2 Tested Environments . 14
4.3 Host Prerequisites . 14
4.4 Installation instructions . 14

5 Run on bare-metal 19
5.1 Flashing the firmware . 19
5.2 Prepare USB stick with TRS . 19
5.3 Boot TRS . 19

6 Install QEMU 21
6.1 Run . 21
6.2 Test . 21

7 TRS recipes 23

8 FAQ 25
8.1 My board only has an SD card . 25
8.2 Q: How to increase OP-TEE core log level? . 26
8.3 Q: How to modify optee-os sources locally and rebuild? . 26
8.4 Q: Why is the internal eMMC not detected? . 26
8.5 Q: How to skip initramfs and boot to rootfs directly? . 26
8.6 Q: On boot, the kernel logs warnings about GPT, how to fix them? 26
8.7 Q: On boot, the kernel logs “EXT4 . . . recovery complete”, what’s wrong? 26
8.8 Q: symbolize.py for TAs (on e.g., the fTPM TA) prints DWARF warnings and no source file/line info. 27

i

8.9 Q: My board randomly hangs or crashes under system load. 27

9 Firmware 29
9.1 Trusted Substrate . 29
9.2 Hardware and Software . 29
9.3 Build and install . 31
9.4 Configuration and OS booting . 35
9.5 References . 39
9.6 Terms and abbreviations . 39

10 Features 41
10.1 Secure Boot . 41
10.2 Measured Boot . 43
10.3 LUKS2 disk encryption . 44
10.4 OP-TEE OS . 48
10.5 Xen . 49

11 Threat models 53
11.1 Use cases . 53
11.2 Other projects threat models . 56
11.3 Links . 58

Bibliography 59

Index 61

ii

TRS Documentation

The main documentation for the site is organized into a couple sections:

• About

• Installation

• Security

• Features

ABOUT 1

TRS Documentation

2 ABOUT

CHAPTER

ONE

ABOUT TRS

Developing software on its own is complicated and requires time, skills and lots of efforts. But being good at writing
individual software isn’t sufficient in this day and age. Systems are inherently complicated with lots of components
interacting with each other. We have to deal with intra communication as well as external communication with remote
systems. All aspects of security has to be considered, standards needs to be addressed and systems needs to be tested
not only as individual components, but as coherent systems. For device manufacturers this becomes a real challenge,
which is very costly both in terms on time and effort.

As an answer to the challenges presented, Linaro have created TRS (Trusted Reference Stack), which is an umbrella
project and a software stack containing well tested software components making up a solid base for efficient develop-
ment and for building unique and differentiating end-to-end use cases.

1.1 Goals and key properties

• Common platform for deliverables from Linaro.

• Include all Linaro test suites and test frameworks making CI/CD and regression testing fast, valuable and efficient.

• Efficient development environment for engineers.

• A product ready reference implementation.

• Configurable to be able to meet different needs.

• Common ground and building block for Blueprints and similar targets.

• Interoperability making it possible to use alternative implementations.

• Pre-silicon IP support in environments like QEMU etc.

1.2 Firmware Software Components

The firmware components for TRS is provided by Trusted Substrate more details, please look here

3

TRS Documentation

1.3 Releases

1.3.1 v0.2 - 2023-03-07

• Stable CI

– xtest from OP-TEE (nightly and merge request)

– Measured boot tests (nightly and merge request)

– Secure boot (nightly and merge request)

– ACS 1.0 manually, except QEMU, where it is in CI.

• Platform support, meaning that they work with TRS

– QEMU

– RockPi4

– Synquacer

• New features

– Authenticated policies.

– Grub as part of the boot flow.

1.3.2 v0.1 - 2022-12-16

• Restructured the layer structure, by moving some layers up to the top level.

• QEMU is built by Yocto instead of relying on the host installed QEMU version.

• Changed repo release/branching strategy.

• Trusted Substrate documentation has moved into a subsection of TRS.

• Uses Trusted Substrate v0.2.

• Uses LEDGE Secure v0.1.

• Features enabled: LUKS disc encryption, Measured Boot, UEFI Secure Boot using U-boot.

1.3.3 v0.1-beta - 2022-09-02

Note: This release is slightly flawed, mostly due to the fact that code was checked out when the build was started and
the code did not always track stable commits.

• Builds TRS for the QEMU target.

• Boot cleanly up to the login prompt.

• Nothing tested.

• RockPi4 works, but not officially part of the v0.1-beta release.

4 Chapter 1. About TRS

CHAPTER

TWO

GETTING STARTED

The instructions on this page are a one time setup (per workspace). Two installation/setup methods are provided below.
First is the manual option. This is for those who may want to integrate into their native development environment. The
second option is to create create a development environment in docker. This will mean having Docker available on
your development system.

5

TRS Documentation

6 Chapter 2. Getting started

CHAPTER

THREE

MANUAL INSTALLATION

3.1 1. Install repo

Note that here you don’t install a huge SDK, it’s simply a Python script that you download and put in your $PATH, that’s
it. Exactly how to “install” repo, can be found at the Google repo pages, so follow those instructions before continuing.

3.2 2. Getting the source code

Now we will check out code for the TRS. This step is light weight and only check out code necessary to build TRS.
There are two flavors right now, either you checkout the one tracking lastest on all gits or you’ll checkout a certain
release (the difference is in the repo init line, as highlighted).

3.2.1 For latest, do this

$ mkdir trs-workspace
$ cd trs-workspace
$ repo init -u https://gitlab.com/Linaro/trusted-reference-stack/trs-manifest.git -m␣
→˓default.xml
$ repo sync -j3

3.2.2 For a specific release, do this

$ mkdir trs-workspace
$ cd trs-workspace
$ repo init -u https://gitlab.com/Linaro/trusted-reference-stack/trs-manifest.git -m␣
→˓default.xml -b <release-tag>
$ repo sync -j3

7

https://source.android.com/docs/setup/develop#installing-repo

TRS Documentation

3.3 3. Installing prerequisites

TRS depends on a couple of packages that needs to be present on the host system. These are installed as distro packages
and using Python pip.

3.3.1 Host packages

Ubuntu / Debian

Host / apt packages

This will require your sudo password, from the root of the workspace:

$ cd <workspace root>
$ make apt-prereqs

This will install the following packages:

acpica-tools
adb
autoconf
automake
bc
bison
build-essential
ccache
chrpath
cloud-guest-utils
cpio
cscope
curl
device-tree-compiler
diffstat
expect
fastboot
file
flex
ftp-upload
gawk
gdisk
inetutils-ping
iproute2
libattr1-dev
libcap-dev
libfdt-dev
libftdi-dev
libglib2.0-dev
libgmp3-dev
libhidapi-dev
libmpc-dev
libncurses5-dev
libpixman-1-dev
libssl-dev

(continues on next page)

8 Chapter 3. Manual installation

TRS Documentation

(continued from previous page)

libtool
locales-all
lz4
make
make
mtools
netcat-openbsd
ninja-build
pip
python3-cryptography
python3-pip
python3-pyelftools
python3-serial
python3-venv
python-is-python3
qemu-system-aarch64
rsync
sudo
unzip
uuid-dev
wget
xdg-utils
xdg-utils
xterm
xz-utils
zlib1g-dev
zstd

Arch Linux

Warning: Just boiler plate, no complete instructions. Only Ubuntu versions tested so far.

Install the necessary packages using pacman.

$ sudo pacman -Syy
$ sudo pacman -S git

Fedora

Warning: Just boiler plate, no complete instructions. Only Ubuntu versions tested so far.

Install the necessary packages using dnf.

$ sudo dnf update
$ sudo dnf install git

3.3. 3. Installing prerequisites 9

TRS Documentation

3.3.2 Python packages

By default all python packages will be installed at <workspace root>/.pyvenv using a virtual Python enviroment.
The benefits by doing so is that if we delete the .pyvenv folder, there will be no traces left of the Python packages
needed for TRS. It can eventually also avoid clashing with tools needing other versions of some Python packages.

$ cd <workspace root>
$ make python-prereqs

3.4 4. Building

3.4.1 4.1 Support virtualization with Xen (Optional)

To support Xen in TRS, in the configuration file meta-trs/conf/distro/trs.conf you need to replace distro feature
ewaol-baremetalwith ewaol-virtualization and append to variable DISTRO_FEATURES; with the virtualization
feature, Xen hypervisor and its associated packages (including kernel modules and tools) will be built in TRS image.

In the file meta-trs/conf/distro/trs.conf
DISTRO_FEATURES:append = " ewaol-virtualization"

3.4.2 4.2 Build firmwares and TRS image

Since we are using a virtual Python environment, we need begin by sourceing it.

$ source <workspace root>/.pyvenv/bin/activate

Note: The source command must be run once each time a new shell is created.

Next we start the build, this will probably take several hours on a normal desktop computer the first time you’re building
it with nothing in the cache(s). The TRS is based on various Yocto layers and if you don’t have your DL_DIR and
SSTATE_DIR set as an environment variable, those will be set to $HOME/yocto_cache by default. Note that the clean
target does not remove the download and sstate caches. make clean is a rather quick process that is often needed after
modifying the Yocto meta layers.

$ cd <workspace root>
$ make

After you complete the whole building process, if you want to only build firmwares for saving time, you could use the
command make meta-ts; for only building the TRS image, the command make trs can be used. You also can use
the command make trs-dev, it builds TRS image with enabling ewaol-sdk distro feature and includes debugging and
profiling tools (e.g. gdb, perf, systemtap, ltt-ng, etc).

If you only want to build the firmare for a single target, you can choose the target from meta-ts/
meta-trustedsubstrate/conf/templates/multiconfig/ and run:

$ cd <workspace root>
$ make TS_SUPPORTED_TARGETS=<target-name> meta-ts

Only the firmware is target-specific. The image is shared across devices (note that not all targets that are supported by
the firmware are supported by the TRS image).

10 Chapter 3. Manual installation

TRS Documentation

3.5 5. Target specific installation

After following the steps above, please continue with the target specific instructions:

1. Install QEMU

2. Run on bare-metal

3.6 5. Tips and tricks

3.6.1 5.1 Reference local mirrors

As the repo forest grows, the amount of time to run the initial repo sync increases. The repository tool is able to
reference a locally cloned forest and clone the bulk of the code from there, taking just the eventual delta between local
mirrors and upstream trees. The way to do this is to add the parameter --reference when running the repo init
command, for example:

$ repo init -u https://... --reference <path-to-my-existing-forest>

3.6.2 5.2 Local manifests

In some cases we might want to use another remote, pick a certain commit or even a add another repository to the
current repo setup. The way to do that with repo is to use local manifests. The end result would be the same as
manually clone or checkout a certain tag or commit. The advantage of using a local manifest is that when running
“repo sync”, the original manifest will not override our temporary modifications. I.e., it’s possible to reference and
keep using a temporary copy if needed.

3.5. 5. Target specific installation 11

https://source.android.com/docs/setup/develop#installing-repo
https://gerrit.googlesource.com/git-repo/+/master/docs/manifest-format.md#Local-Manifests

TRS Documentation

12 Chapter 3. Manual installation

CHAPTER

FOUR

DOCKER INSTALL

This installation method has been created to aid developers in quickly setting up an initial TRS development environ-
ment. By leveraging the scripts and Dockerfile available in the trs repository, with just a few steps you can have a
trs-development environment running in a docker container. The benefits of using a container for your development
environment include quickly reproducing your environment, speed of setup, all devs in a similar environment, can be
customized/extended to meet your needs, usable across different host platforms, and more.

4.1 Container Configuration

This section provides an overview of how this container is set up.

13

https://gitlab.com/Linaro/trusted-reference-stack/trs/-/tree/main/scripts/docker-scripts

TRS Documentation

Referring to the diagram above:

• The username is dev

• When logging into the container, it defaults into the pre-determined $HOME/trs-workspace directory

• Under $HOME/trs-workspace is the ./build directory that has a softlink to the $HOME/yocto_cache/ di-
rectories

• This docker configuration provides three shared directories

– The first, $HOME/trs_reference_repo on the Host is shared with $HOME/trs-reference-repo in the
container. This allows a user to keep it updated from the host side and potentially be shared by multiple
containers

– The second and third directories are tied to the creation of a yocto build cache, also to reduce build times.
These default to $HOME/yocto_cache on the host and container. Two subdirectories are created un-
der $HOME/yocto_cache. These are $HOME/yocto_cache/sstate-cache and $HOME/yocto_cache/
downloads

• The default directories/shares described above may of course all be customized by modifying the Dockerfile and
Scripts, but note that the naming must be assured to be consistent in all the files.

4.2 Tested Environments

The instructions/scripts in this section have been verified against Ubuntu 22.04 desktop machine and a share server
environment also based on Ubuntu 20.04

4.3 Host Prerequisites

• Assure that Docker has been installed on your Host development machine

$: docker --version;
Docker version 20.10.19, build d85ef84;

Note: These instructions assume the user name is “dev”

4.4 Installation instructions

Since there are instructions for both the Host running Docker and the Container that will have the Ubuntu 20.04 TRS
development environment set up, the following sections will delineate the difference by using “Host” or “Container”
in the header. That way a user will know where the commands are intended to run.

14 Chapter 4. Docker Install

TRS Documentation

4.4.1 1. Clone the TRS repository (Host)

Cloning the repo to be able to easily grab the scripts.

$ cd ~
$ mkdir trs-repo
$ cd trs-repo
$ git clone https://gitlab.com/Linaro/trusted-reference-stack/trs.git

Optionally check that the Dockerfile and scripts are present:

$ ls ~/trs-repo/trs/scripts/docker-scripts
Dockerfile run-trs.sh trs-install.sh

4.4.2 2. Build Docker Image (Host)

Create a docker image the named “trs”

$ cd ~/trs-repo/trs/scripts/docker-scripts
$ docker build -t trs .

Note: The above defaults to a UID/GID of 1000/1000; typical of an Ubuntu Desktop. If the host has a different
UID/GID and it’s desired for the container to have the same, use the following command instead of the one above:

$ cd ~/trs-repo/trs/scripts/docker-scripts
$ docker build --build-arg USER_UID=$(id -u) --build-arg USER_GID=$(id -g) -t trs .

Hint: During a docker build, it’s not uncommon to see warnings such as the following that can be ignored.

For example

WARNING: apt does not have a stable CLI interface. Use with caution in scripts.

Optionally, after completion of the docker build, you can confirm that the images are there and look OK. Assuming
you had no other docker images, you should see something similar to the following:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
trs latest 2a10a95eacd2 10 seconds ago 336MB
ubuntu 22.04 a8780b506fa4 4 weeks ago 77.8MB

4.4. Installation instructions 15

TRS Documentation

4.4.3 3. Download and sync the TRS source using Repo tool (Host)

As described above, the Host and Container share the TRS repo in a shared directory. This section sets up this share
TRS repo with the following commands.

$ cd ~
$ mkdir trs_reference_repo
$ cd trs_reference_repo
$ repo init -u https://gitlab.com/Linaro/trusted-reference-stack/trs-manifest.git -m␣
→˓default.xml
$ repo sync

With all the above steps completed, we’re now ready to launch the TRS container!

Warning: The location above is important as this is a shared folder between the Host and the Container. If the
user chooses to change this location, the scripts/Dockerfile must be updated to align.

4.4.4 4. Create and enter the Container (Host)

The following commands will launch the container using the Dockerfile built in the earlier steps

$ cd ~/trs-repo/trs/scripts/docker-scripts
$ docker build -t trs .
$./run-trs.sh

dev@2d0b8419dac3:~/trs-workspace$

A new prompt will be shown in your terminal similar to the above and you’re now working in the docker container!

Optionally, from the Container, some quick checks can be executed to assure that the container is set up right. This
includes assuring all the shares have permissions set correctly, and that the build directory is linked to the yocto_cache
directory using a soft link.

dev@92fae72fafee:~/trs-workspace$ ls -l
total 8
drwxr-xr-x 1 dev dev 4096 Jan 27 21:22 build
-rwxrwxr-x 1 dev dev 1936 Jan 27 20:41 trs-install.sh
dev@92fae72fafee:

dev@2d0b8419dac3:~/trs-workspace$ ls -l build
total 0
lrwxrwxrwx 1 dev dev 31 Jan 27 21:22 downloads -> /home/dev/yocto_cache/downloads
lrwxrwxrwx 1 dev dev 34 Jan 27 21:22 sstate-cache -> /home/dev/yocto_cache/sstate-
→˓caches
dev@92fae72fafee:

dev@2d0b8419dac3:~/trs-workspace$ ls -l ~
total 16
drwxrwxr-x 17 dev dev 4096 Jan 19 23:26 trs-reference-repo
drwxr-xr-x 1 dev dev 4096 Jan 27 21:27 trs-workspace
drwxr-xr-x 1 root root 4096 Jan 27 21:21 yocto_cache

(continues on next page)

16 Chapter 4. Docker Install

TRS Documentation

(continued from previous page)

dev@92fae72fafee:~/trs-workspace$ ls ~/yocto_cache -l
total 80
drwxrwxr-x 4 dev dev 73728 Jan 27 22:05 downloads
drwxrwxr-x 259 dev dev 4096 Jan 27 21:28 sstate-cache

dev@2d0b8419dac3:~/trs-workspace$

dev@92fae72fafee:~/trs-workspace$ ping google.com
PING google.com (142.250.188.238) 56(84) bytes of data.
64 bytes from lax31s15-in-f14.1e100.net (142.250.188.238): icmp_seq=1 ttl=116 time=31.7␣
→˓ms
64 bytes from lax31s15-in-f14.1e100.net (142.250.188.238): icmp_seq=2 ttl=116 time=29.2␣
→˓ms
64 bytes from lax31s15-in-f14.1e100.net (142.250.188.238): icmp_seq=3 ttl=116 time=26.4␣
→˓ms
^C
--- google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 26.419/29.119/31.708/2.160 ms
dev@92fae72fafee:~/trs-workspace$ ^C
dev@92fae72fafee:~/trs-workspace$

If the user, group and shares all look good and a ping verified we have connectivity to the internet, then we’re ready to
move on to the final step, which is performing a trs build!

6 Build TRS (Container) =============================== To verify everything is correct, perform a build
by executing the ./trs-install.sh -h -r command. Be sure to include the -h -r options when kicking off the
build script for the build to work correctly.

dev@92fae72fafee:~/trs-workspace$./trs-install.sh -h -r
Using Yocto cache from host
Using reference from host
Downloading Repo source from https://gerrit.googlesource.com/git-repo
repo: Updating release signing keys to keyset ver 2.3
warning: gpg (GnuPG) is not available.
warning: Installing it is strongly encouraged.

repo has been initialized in /home/dev/trs-workspace
Fetching: 71% (10/14) Linaro/trusted-reference-stack/trs.git
...

Note: This build currently requires several hours to complete. There will be a number of warnings during the build,
but this is OK. If completes successfully, then you’ll see a message prior to returning to the prompt similar to the
following:

Summary: There were 4 WARNING messages.
Build succeeded, see output in build/tmp_trs-qemuarm64/deploy directories.
dev@92fae72fafee:~/trs-workspace$

Once the build succeeds, the user can perform a final verification step, which is to execute the steps in the Install QEMU
section of this document.

4.4. Installation instructions 17

TRS Documentation

18 Chapter 4. Docker Install

CHAPTER

FIVE

RUN ON BARE-METAL

This document describes how to run TRS for various supported targets.

The easiest way to get TRS up and running is

• Flash your device firmware to the correct medium

• Prepare a USB disk with the OS

5.1 Flashing the firmware

Firmware is device specific. As a result each of the supported boards has vendor specific requirements for writing the
firmware.

You can find per device instructions in our Installing firmware section.

Warning: If your firmware is going to be flashed on an SD card make sure the device in /dev is present before
proceeding. If the /dev/sdX file is missing you will end up creating a static in /dev and write nothing on the SD
card. The card will not be detected until you delete the file!

5.2 Prepare USB stick with TRS

To flash the rootfs image you built above, from your TRS build directory

$ sudo dd if=build/tmp_trs-qemuarm64/deploy/images/trs-qemuarm64/trs-image-trs-qemuarm64.
→˓wic of=/dev/sdX bs=1M status=progress
$ sync

5.3 Boot TRS

Attach the USB stick on USB port and reset the device. If your USB stick is detected TRS will boot automatically.

Warning: Always prefer USB 3.0+ ports. If you have problems booting TRS, interrupt U-Boot boot sequence
and make sure your disk is detected.

19

TRS Documentation

=> usb start
=> usb storage
Device 0: Vendor: SanDisk Rev: 1.00 Prod: Cruzer Blade

Type: Removable Hard Disk
Capacity: 29340.0 MB = 28.6 GB (60088320 x 512)

20 Chapter 5. Run on bare-metal

CHAPTER

SIX

INSTALL QEMU

This document describes how to run TRS for the QEMU target. It is assumed that you have completed the procedures
outlined on the Getting started page and at least built the firmware for the tsqemuarm64-secureboot target and the
trs image. If not, begin there before proceeding.

6.1 Run

After the build is complete, you will be able to run it on your host system using QEMU.

$ make run

U-Boot is already set to boot the current kernel, initramfs, and rootfs upon initial startup.

Note: To quit QEMU, press Ctrl-A x (alternatively kill the qemu-system-aarch64 process)

If everything goes as planned, you will be greeted with a login message and a login prompt. The login name is ewaol
as depicted below.

ledge-secure-qemuarm64 login: ewaol
ewaol@ledge-secure-qemuarm64:~$

Alternatively if you want to launch QEMU manually follow the instructions Run on QEMU arm64

6.2 Test

Once the build has been completed, you can run automatic tests with QEMU. These boot QEMU using the compiled
images and run test commands via SSH on the running system. While the QEMU image is running, SSH access to
it works via localhost IP address 127.0.0.1 and TCP port 2222. TEST_SUITES variable in trs-image.bb recipe
define which tests are executed.

$ cd <workspace root>
$ make test

See Yocto runtime testing documentation for details about the test environment and instructions for writing new tests.

21

https://docs.yoctoproject.org/singleindex.html#performing-automated-runtime-testing
https://docs.yoctoproject.org/singleindex.html#writing-new-tests

TRS Documentation

22 Chapter 6. Install QEMU

CHAPTER

SEVEN

TRS RECIPES

TRS levarage various layers and recipes to build firmware, root filesystem and various images. The best place to start
looking for the recipes used, would be in the manifest files (*.xml) in trs-manifest.git.

23

https://gitlab.com/Linaro/trusted-reference-stack/trs-manifest

TRS Documentation

24 Chapter 7. TRS recipes

CHAPTER

EIGHT

FAQ

8.1 My board only has an SD card

We boot the system using an SD card only. However, we need to merge firmware and root file system images into a
single image and store it into the SD card. Luckily we provide a script for that:

$ gunzip <firmware image>.wic.gz
$ wget https://git.linaro.org/ci/job/configs.git/plain/ledge/ts/scripts/ts-merge-images.
→˓sh
$ chmod +x ts-merge-images.sh
$./ts-merge-images.sh <firmware image>.wic trs-image-trs-qemuarm64.wic

Verify the images are programmed correctly. Note that only “ESP” and “Root Filesystem” will be identical on your
board. The number and nature of the preceding are vendor specific.

Here is an example from a RockPI4b board:

$ fdisk -l ts-firmware-rockpi4b.wic
Disk ts-firmware-rockpi4b.wic: 2.28 GiB, 2443199488 bytes, 4771874 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: B9476BE0-8456-4A3B-98D4-75A91739819F

Device Start End Sectors Size Type
ts-firmware-rockpi4b.wic1 64 8063 8000 3.9M unknown
ts-firmware-rockpi4b.wic2 8064 8191 128 64K Microsoft basic data
ts-firmware-rockpi4b.wic3 8192 16383 8192 4M Microsoft basic data
ts-firmware-rockpi4b.wic4 16384 24575 8192 4M unknown
ts-firmware-rockpi4b.wic5 24576 32767 8192 4M Microsoft basic data
ts-firmware-rockpi4b.wic6 32768 557055 524288 256M EFI System <------- ESP
ts-firmware-rockpi4b.wic7 557056 4751359 4194304 2G Linux filesystem <-------␣
→˓Root Filesystem

25

TRS Documentation

8.2 Q: How to increase OP-TEE core log level?

Add CFG_TEE_CORE_LOG_LEVEL=3 to EXTRA_OEMAKE in meta-ts/meta-arm/recipes-security/optee/
optee-os.inc and rebuild (kas build. . .)

8.3 Q: How to modify optee-os sources locally and rebuild?

1. Remove line INHERIT += rm_work in ci/base.yml

2. Run $ kas shell ci/rockpi4b.yml

1. bitbake -c cleansstate optee-os # WARNING removes source in work directory

2. $ bitbake optee-os

3. Edit source files in build/tmp/work/rockpi4b-poky-linux/optee-os/<ver>/git $ bitbake
-c compile -f optee-os # mandatory before kas build below it seems

3. Exit kas shell and run $ kas build ci/rockpi4b.yml

8.4 Q: Why is the internal eMMC not detected?

Try a different USB-C power supply. We use a Dell one. I have another no-name PS supposedly rated PD 100W which
doesn’t work reliably.

8.5 Q: How to skip initramfs and boot to rootfs directly?

$ efidebug boot add -b 1 TRS usb 0:1 Image -s 'panic=60 root=/dev/sda2 rootwait';␣
→˓efidebug boot order 1; bootefi bootmgr

8.6 Q: On boot, the kernel logs warnings about GPT, how to fix them?

They are harmless, they are caused by the fact that the actual device (USB key) is larger than the image copied to it.
The warnings can be removed by running gparted /dev/sdaX and accepting the prompt to fix the GPT info.

8.7 Q: On boot, the kernel logs “EXT4 . . . recovery complete”, what’s
wrong?

Usually harmless. The board was not powered off or rebooted cleanly. Use systemctl halt or systemctl reboot.

26 Chapter 8. FAQ

TRS Documentation

8.8 Q: symbolize.py for TAs (on e.g., the fTPM TA) prints DWARF warn-
ings and no source file/line info.

The default toolchains (aarch64-linux-gnu-*) is too old (7.2). Put a more recent one in your PATH before invoking
symbolize.py (Note: some source/file line info are still missing, could be due to build flags)

8.9 Q: My board randomly hangs or crashes under system load.

Some boards are very picky about their PSU. Ensure you are using an official PSU. E.g for the RockPI4b https://shop.
allnetchina.cn/products/power-supply-adapter-qc-3-0-for-rock-pi-4

Do not use a 5v only USB-C PSU (such as a USB port on your laptop), as you will hit random board stability issues.

8.8. Q: symbolize.py for TAs (on e.g., the fTPM TA) prints DWARF warnings and no source file/line
info.

27

https://shop.allnetchina.cn/products/power-supply-adapter-qc-3-0-for-rock-pi-4
https://shop.allnetchina.cn/products/power-supply-adapter-qc-3-0-for-rock-pi-4

TRS Documentation

28 Chapter 8. FAQ

CHAPTER

NINE

FIRMWARE

9.1 Trusted Substrate

Trusted Substrate is a meta-layer in OpenEmbedded aimed towards board makers who want to produce an Arm Sys-
temReady (based on [EBBR]) compliant firmware and ensure a consistent behavior, tamper protection and common
features across platforms. In a nutshell TrustedSubstrate is building firmware for devices which verifies the running
software hasn’t been tampered with. It does so by utilizing a well known set of standards.

• UEFI secure boot enabled by default

UEFI Secure Boot is a verification mechanism for ensuring that code launched by a computer’s UEFI
firmware is trusted. It is designed to protect a system against malicious code being loaded and executed
early in the boot process, before the operating system has been loaded.

• Measured boot. With a discrete or firmware TPM

Measured Boot is a method where each of the software layers in the boot sequence of the device ,
measures the next layer in the execution order, and extends the value in a designated TPM PCR. Measured
boot further validates the boot process beyond Secure Boot.

• Dual banked firmware updates with rollback and bricking protection

Dual banked firmware updates provides protection to the firmware update mechanism and shield the
device against bricking as well as rollback attacks.

9.2 Hardware and Software

9.2.1 Supported Platforms

Trusted Substrate supports a variety of armv8 and armv7 boards. It’s important to understand that the hardware char-
acteristics dictate the supported features as well as the level of the device security

29

https://www.arm.com/architecture/system-architectures/systemready-certification-program
https://www.arm.com/architecture/system-architectures/systemready-certification-program

TRS Documentation

Software Components

Generally the following software components are used to boot up the boards and setup the chain of trust

• U-Boot

• OP-TEE

• TF-A

• firmware TPM

• StandAloneMM from EDK2

• SCP

A high level overview of the boot chain looks will look like this

Board Support

• QEMU (arm64)

• SynQuacer DeveloperBox

• stm32mp157c-dk2

• stm32mp157c-ev1

• Rockpi4

• Raspberry Pi4

• Xilinx kv260 starter kit

• Xilinx kv260 commercial

30 Chapter 9. Firmware

https://source.denx.de/u-boot/u-boot
https://github.com/OP-TEE
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://github.com/microsoft/ms-tpm-20-ref
https://github.com/tianocore/edk2-platforms.git
https://github.com/ARM-software/SCP-firmware
https://www.96boards.org/product/developerbox/
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157c-ev1.html
https://rockpi.org/rockpi4
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.xilinx.com/products/som/kria/kv260-vision-starter-kit.html
https://www.xilinx.com/products/som/kria/k26c-commercial.html

TRS Documentation

Supported platform features

Board FSBL Secure Boot Measured Boot Auth. Capsule Up-
dates

A/B up-
dates

QEMU TF-A Yes (Built-in
vars)

Yes No No

DeveloperBox SCP + TF-
A

Yes (RPMB
vars)

Yes [fTPM] Yes WIP

stm32mp157c-dk2 TF-A Yes (Built-in
vars)

No No WIP

stm32mp157c-ev1 TF-A Yes (RPMB
vars)

No No WIP

Rockpi4 U-Boot
SPL

Yes (RPMB
vars)

Yes [fTPM] Yes No

Raspberry Pi4 Propri-
etary

Yes (Built-in
vars)

Yes (needs SPI
TPM)

No No

Xilinx kv260 starter
kit

U-Boot
SPL

Yes (Built-in
vars)

Yes Yes WIP

Xilinx kv260 com-
mercial

U-Boot
SPL

Yes (Built-in
vars)

Yes Yes WIP

9.3 Build and install

9.3.1 Getting the firmware

Building from source

Trusted Substrate depends on a couple of different packages being present in the host OS environment to be able to
successfully build the firmware. The list of packages known to be needed can be found below.

Prerequisites for meta-ts

Python packages:

pip install kas

Debian based distro packages :

sudo apt install chrpath diffstat lz4

9.3. Build and install 31

TRS Documentation

Building meta-ts from source

Compiling for different boards is straightforward.

Warning: Since UEFI secure boot is enabled by default, boards that embed the UEFI keys in the firmware bi-
nary will use the predefined Linaro certificates. Those boards will only be allowed to boot images signed by the
afforementioned Linaro certificates.

Building with your own certificates if you want to generate your own

Hardware and UEFI variable limitations for hardware limitations

git clone https://gitlab.com/linaro/trustedsubstrate/meta-ts.git
cd meta-ts
kas build ci/<board>.yml

replace <board> with

• qemuarm64-secureboot

• synquacer

• stm32mp157c-dk2

• stm32mp157c-ev1

• rockpi4b

• rpi4

• zynqmp-kria-starter

The build output is in build/tmp/deploy/images/

Hint: The build directory contains a lot of artifacts. Look at Installing firmware for the per board files you need

Downloading board binaries

We do produce daily builds for all the support boards here

Building with your own certificates

Warning: The default nightly builds we provide for devices that embed the keys are using a private key that is
available at meta-trustedsubstrate/uefi-certificates/. Anyone could sign and boot an EFI binary! This
is a mandatory step for a production firmware!

You need to generate the following keys:

• PK - Platform Key (Top-level key)

• KEK - Key Exchange Keys (Keys used to sign Signatures Database and Forbidden Signatures Database updates)

• db - Signature Database (Contains keys and/or hashes of allowed EFI binaries)

32 Chapter 9. Firmware

https://gitlab.com/linaro/trustedsubstrate/meta-ts/-/tree/master/meta-trustedsubstrate/uefi-certificates
https://gitlab.com/Linaro/trustedsubstrate/meta-ts#images

TRS Documentation

• dbx - Forbidden Signature Database (Contains keys and/or hashes of forbidden EFI binaries)

Refer to Create certificates and keys for generating certificates and create tar.gz archive with the .esl files

tar -czf uefi_certs.tgz db.esl dbx.esl KEK.esl PK.esl

Set up an environment variable UEFI_CERT_FILE: "<path>/uefi_certs.tgz" in your local.conf or in ci/
base.yml and recompile your firmware.

Note: This is only needed if the variables are built-in into the firmware binary. You don’t need this if your board has
an RPMB and OP-TEE support.

9.3.2 Installing firmware

If your hardware can boot of an SD-card meta-ts will generate a WIC image which you can dd to your target. Otherwise
the firmware must be flashed in a board specific way.

Since the firmware provides a [UEFI] interface you are free to choose the distro you prefer.

QEMU arm64

QEMU just needs the build file containing all the firmware binaries.

Note: Files needed from build directory flash.bin

SynQuacer

The SynQuacer can’t boot from an SD card. You need to download and install the firmware via xmodem. You can find
detailed instructions here

The short version is flip DSW2-7 to enable the serial flasher, open your minicom and use xmodem to send and update
the files.

flash write cm3 -> Control-A S (send scp_romramfw_release.bin)
flash rawwrite 0x600000 0x200000 (Control-A S -> fip.bin)

After successful firmware update via serial flasher, power off the board, set DSW2-7 to OFF, DSW3-3 and DSW3-4 to
ON to enable OP-TEE and TBB(Trusted Board Boot).

Note: Files needed from build directory scp_romramfw_release.bin, fip.bin

9.3. Build and install 33

https://www.yoctoproject.org/docs/2.4.2/dev-manual/dev-manual.html#creating-partitioned-images-using-wic
https://www.96boards.org/documentation/enterprise/developerbox/installation/board-recovery.md.html#update-using-serial-flasher

TRS Documentation

stm32mp157c dk2 or ev1

zcat ts-firmware-stm32mp157c-dk2.wic.gz > /dev/sdX
zcat ts-firmware-stm32mp157c-ev1.wic.gz > /dev/sdX

Note: Files needed from build directory ts-firmware-stm32mp157c-dk2.wic.gz or ts-firmware-stm32mp157c-
ev1.wic.gz

rockpi4b

zcat ts-firmware-rockpi4b.rootfs.wic.gz > /dev/sdX

Note: Files needed from build directory ts-firmware-rockpi4b.rootfs.wic.gz

Raspberry Pi4

zcat ts-firmware-rpi4.wic.gz > /dev/sdX

Note: Files needed from build directory ts-firmware-rpi4.wic.gz

Xilinx KV260 AI Starter kit

This board uses an internal SPI flash. You need to reset the board while pressing FWUEN switch. This will launch an
HTTP server at 192.168.0.111

Connect to the web Interface and update ImageA and ImageB

Note: Files needed from build directory ImageA.bin, ImageB.bin

9.3.3 Updating the firmware

Generating capsules

Capsules will automatically be built along with the firmware files. You can find them in the boards build directory
build/tmp/deploy/images/<machine>/<machine>_fw.capsule

34 Chapter 9. Firmware

TRS Documentation

Applying capsules from the command line

• Copy the capsules in the ESP in the \EFI\UpdateCapsule directory

• Since the \EFI\UpdateCapsule is only checked for capsules within the device that an active boot option is spec-
ified, make sure your BootOrder variables are correctly set. Alternatively tou can set BootNext variable with
(assumin the capsule is on your mmc) efidebug boot add -b 1001 cap mmc 1:1 EFI/UpdateCapsule
&& efidebug boot next 1001

• In U-Boot console issue setenv -e -nv -bs -rt -v OsIndications =0x0000000000000004

• Reboot the board the capsules should be detected and applied. Alternatively you can manually apply the capsules
with efidebug capsule disk-update using the U-Boot console.

If processing the capsule is sucessful you should see something like the following in the log.

Applying capsule <capsule file> succeeded
Reboot after firmware update
resetting ...

More information about capsules and uefi in U-Boot can be found U-Boot capsule update

Applying capsules from the OS

Capsule update-on-disk is supported via fwupd. When fwupd runs, it will copy the firmware files to \EFI\
UpdateCapsule of the ESP. Once the board reboots capsule will be applied automatically. More information can
be found here

TrustedSubstrate builds the required .cab files for all the platforms. You can find them in the build directory as
<machine name>_fw.cab

sudo fwupdtool install /path/to/<machine name>_fw.cab

Note: The EFI Spec mandates: The directory EFIUpdateCapsule is checked for capsules only within the EFI system
partition on the device specified in the active boot option determined by reference to BootNext variable or BootOrder
variable processing. The active Boot Variable is the variable with highest priority BootNext or within BootOrder that
refers to a device found to be present. Boot variables in BootOrder but referring to devices not present are ignored
when determining active boot variable.

Since SetVariable at runtime is not yet supported, the only available option is place the EFIUpdateCapsule within the
ESP partition indicated by the current BootOrder.

9.4 Configuration and OS booting

9.4.1 Configuring UEFI variables

Boards that embed the UEFI keys in the U-Boot binary Hardware and UEFI variable limitations won’t allow you to
change the EFI security related variables (PK, KEK, db and dbx).

That category of boards comes with a predefined set of keys. For more details look at Building with your own certificates

9.4. Configuration and OS booting 35

https://u-boot.readthedocs.io/en/latest/develop/uefi/uefi.html
https://github.com/fwupd/fwupd/blob/main/plugins/uefi-capsule/README.md

TRS Documentation

Enabling Secure Boot

Secure Boot is enabled and disabled automatically based on the existence of a Platform Key (PK). Enrolling one will
enable UEFI Secure Boot and all the EFI binaries must to be signed.

For more details look at [UEFI] (§ 32.3.1 Enrolling The Platform Key)

Create certificates and keys

Copy and run the script below. The .auth files you need can be found in efi_keys/ directory and the private certificates
on priv_keys.

Note: This script is provided as sample. Always backup your SSL certificates directory!

#!/bin/bash
sudo apt install efitools openssl uuid-runtime
set -e
CN='mytestCA'
OUT_DIR=priv_keys/
OUT_EFI_DIR=efi_keys/

mkdir $OUT_DIR -p
mkdir $OUT_EFI_DIR -p
if [! -e "$OUT_DIR/GUID.txt"]; then

GUID=$(uuidgen)
echo $GUID > $OUT_DIR/GUID.txt

else
echo "Please remove '"$OUT_DIR"GUID.txt' to regenerate certs"
echo "This will overwrite your private keys!"
exit 1

fi

for cert in PK KEK db dbx; do
SSL certs
openssl req -new -x509 -newkey rsa:2048 -subj "/CN=$CN $cert/" -keyout \

$OUT_DIR/$cert.key -out $OUT_DIR/$cert.crt -days 3650 -nodes -sha256

EFI signature list certs
.esl certs can be concatenated if we want to support multiple signers
cert-to-efi-sig-list -g $GUID $OUT_DIR/$cert.crt $OUT_EFI_DIR/$cert.esl

done
Empty PK to reset secure boot
rm -f $OUT_EFI_DIR/noPK.esl
touch $OUT_EFI_DIR/noPK.esl

sign-efi-sig-list -c $OUT_DIR/PK.crt -k $OUT_DIR/PK.key PK $OUT_EFI_DIR/noPK.esl $OUT_
→˓EFI_DIR/noPK.auth
sign-efi-sig-list -c $OUT_DIR/PK.crt -k $OUT_DIR/PK.key PK $OUT_EFI_DIR/PK.esl $OUT_EFI_
→˓DIR/PK.auth
sign-efi-sig-list -c $OUT_DIR/PK.crt -k $OUT_DIR/PK.key KEK $OUT_EFI_DIR/KEK.esl $OUT_
→˓EFI_DIR/KEK.auth

(continues on next page)

36 Chapter 9. Firmware

TRS Documentation

(continued from previous page)

sign-efi-sig-list -c $OUT_DIR/KEK.crt -k $OUT_DIR/KEK.key db $OUT_EFI_DIR/db.esl $OUT_
→˓EFI_DIR/db.auth
sign-efi-sig-list -c $OUT_DIR/KEK.crt -k $OUT_DIR/KEK.key dbx $OUT_EFI_DIR/dbx.esl $OUT_
→˓EFI_DIR/dbx.auth
chmod 0600 $OUT_DIR/*.key

Enable Secure Boot

The commands below assume the keys are stored in the first partition of a usb stick.

load usb 0:1 90000000 PK.auth && setenv -e -nv -bs -rt -at -i 90000000:$filesize PK
load usb 0:1 90000000 KEK.auth && setenv -e -nv -bs -rt -at -i 90000000:$filesize KEK
load usb 0:1 90000000 db.auth && setenv -e -nv -bs -rt -at -i 90000000:$filesize db
load usb 0:1 90000000 dbx.auth && setenv -e -nv -bs -rt -at -i 90000000:$filesize dbx

Disable Secure Boot

The commands below assume the keys are stored in the first partition of a usb stick.

load usb 0:1 90000000 noPK.auth && setenv -e -nv -bs -rt -at -i 90000000:$filesize PK

9.4.2 Running a distro

Since the firmware provides a [UEFI] interface you are free to choose the distro you prefer. However boards that embed
the UEFI keys in the U-Boot binary Hardware and UEFI variable limitations will only be able to boot signed binaries.
Look at Building with your own certificates if you want to build and your own vertical distro and sign your binaries. If
you use the pre-compiled firmware binaries you can test that with our own TRS distro.

Download TRS

Download a .wic.gz image from here

Running TRS

Throughout the examples we will be using a USB disk. If you prefer a different installation medium you need to adjust
the commands accordingly.

You can prepare one with

zcat trs-image-trs-qemuarm64.rootfs.wic.gz > /dev/sdX

TRS comes with GRUB installed. As a result there is nothing else you have to do to boot your board. Just insert your
USB disk and your device will automatically boot.

Note: TRS, on the first boot, will automatically encrypt your root filesystem if measured boot is enabled on your
firmware.

9.4. Configuration and OS booting 37

https://gitlab.com/Linaro/blueprints/nightly-builds/-/jobs/artifacts/main/raw/images/trs-image-trs-qemuarm64.rootfs.wic.gz?job=build-meta-trs

TRS Documentation

Running TRS without GRUB

If you want to skip GRUB you need to configure the EFI boot manager properly.

Run on QEMU arm64

QEMU can provide a TPM implementation via Software TPM

[SWTPM] provides a memory mapped device which adheres to the TCG TPM Interface Specification

sudo apt install swtpm swtpm-tools

mkdir /tmp/mytpm1 -p

swtpm_setup --tpmstate /tmp/mytpm1 --tpm2 --pcr-banks sha256
swtpm socket --tpmstate dir=/tmp/mytpm1 \

--ctrl type=unixio,path=/tmp/mytpm1/swtpm-sock \
--log level=0 --tpm2 -t -d

gunzip trs-image-trs-qemuarm64.rootfs.wic.gz
qemu-system-aarch64 -m 2048 -smp 2 -nographic -cpu cortex-a57 \

-bios flash.bin -machine virt,secure=on \
-drive id=os,if=none,file=trs-image-trs-qemuarm64.rootfs.wic \
-device virtio-blk-device,drive=os \
-chardev socket,id=chrtpm,path=/tmp/mytpm1/swtpm-sock \
-tpmdev emulator,id=tpm0,chardev=chrtpm \
-device tpm-tis-device,tpmdev=tpm0

=> efidebug boot add -b 1 TRS virtio 0:1 Image -i virtio 0:1 ledge-initramfs.rootfs.cpio.
→˓gz -s 'root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

Run on SynQuacer

=> efidebug boot add -b 1 TRS usb 0:1 Image -i usb 0:1 ledge-initramfs.rootfs.cpio.gz -s
→˓'root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

Run on stm32mp157c dk2 or ev1

TRS does not yet provice Armv7 builds. Command for reference

=> efidebug boot add -b 1 TRS usb 0:1 Image -i usb 0:1 ledge-initramfs.rootfs.cpio.gz -s
→˓'root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

38 Chapter 9. Firmware

https://github.com/stefanberger/swtpm
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientTPMInterfaceSpecification_TIS__1-3_27_03212013.pdf

TRS Documentation

run on rockpi4b

=> efidebug boot add -b 1 TRS usb 0:1 Image -i usb 0:1 ledge-initramfs.rootfs.cpio.gz -s
→˓'root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

Run on Raspberry Pi4

=> efidebug boot add -b 1 TRS usb 0:1 Image -i usb 0:1 ledge-initramfs.rootfs.cpio.gz -s
→˓'root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

Run on Xilinx KV260 AI Starter and Commercial kit

USB is not yet supported in the kernel. Use the mmc interface instead

=> efidebug boot add -b 1 TRS mmc 0:1 Image -i mmc 0:1 ledge-initramfs.rootfs.cpio.gz -s
→˓'root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

9.5 References

9.6 Terms and abbreviations

This document uses the following terms and abbreviations.

UEFI Unified Extensible Firmware Interface.

EBBR Embedded Base Boot Requirements

FSBL First stage boot loader

TPM Trusted Platform Module

PK Platform Key

KEK Key Exhange Key

db Signature Database

dbx Forbidden Signature Database

ESP EFI System Partition

RPMB Replay Protected Memory Block

TCG Trusted Computing Group

9.5. References 39

TRS Documentation

40 Chapter 9. Firmware

CHAPTER

TEN

FEATURES

10.1 Secure Boot

The firmware component of TRS unconditionally enables UEFI secure boot for all supported platforms. There are
some hardware requirements that will dictate how Secure Boot is configured and enabled on your hardware.

[UEFI] (§ 32.3.6 Platform Firmware Key Storage Requirements) defines that the Platform and Key exchange keys must
be stored in a non-volatile storage which is tamper protected.

On Arm servers this is usually tackled by having a dedicated flash which is only accessible by the secure world.

Hardware which was designed with security in mind has the following options.

Hardware UEFI Secure Boot Measured Boot
RPMB1 x x
Discrete TPM x
Flash in secure world x

The reality on embedded boards is different though. In the embedded case, we don’t have a dedicated flash. What’s
becoming more common though is eMMC devices with an RPMB partition.

If the board has a RPMB and OP-TEE support, Trusted Substrate will use that device to store all the EFI variables.
1 Requires OP-TEE support and a way to program the RPMB with a unique per hardware key (e.g a fuse accessible only from the secure world).

Setting EFI variables at runtime (from the OS) not supported

41

TRS Documentation

However for boards that don’t have an RPMB the UEFI public keys (PK, KEK, DB etc) are built-in into the firmware
binary. Bundling those keys comes with it’s own set of limitations. The most notable ones being that in order to update
any security related EFI variable, you need to update the bootloader and you can only boot signed binaries by default.
Other, non security critical, EFI variables are stored in a file located in the ESP.

10.1.1 Hardware and UEFI variable limitations

The firmware automatically enables and disables UEFI Secure Boot based on the existence of the Platform Key (PK).
As a consequence boards that embed the keys in the firmware binary will only be allowed to boot signed binaries and
you won’t be able to change the UEFI keys. See Building with your own certificates

On the other hand boards that store the variables in the RPMB come with an empty PK and the user must provision
one during the setup process in order to enable Secure Boot.

42 Chapter 10. Features

TRS Documentation

10.2 Measured Boot

TRS is designed to take advantage of Trusted Platform modules. The firmware part of TRS supports the EFI TCG
Protocol as well as TCG PC Client Specific Platform Firmware Profile Specification and provides the building blocks
the OS needs for Measured Boot.

In TRS the software components that extend measurements are

• TF-A (QEMU only), creates an EventLog, which U-Boot will later replay on the TPM.

• U-Boot will measure all components described by the afforementioned TCG specs.

• The Linux kernel EFI-stub will measure the loaded initramfs and the EFI LoadOptions.

Note: PCR7 contains the UEFI Secure Boot keys and state. PCR9 will differ depending on your kernel
version. Prior to 5.18 PCR9 will be empty. Past 5.18 and prior to 6.1 PCR9 will contains the initrd
measurement. Post 6.1 it will contain the initrd and EFI LoadOptions measurements.

10.2. Measured Boot 43

https://trustedcomputinggroup.org/resource/tcg-efi-protocol-specification/
https://trustedcomputinggroup.org/resource/tcg-efi-protocol-specification/
https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification/

TRS Documentation

10.2.1 Trusted Platform module

TPMs are microcontrollers designed for cryptographic tasks. They contain a set of Platform Configuration Registers
(PCRs) which are used to measure the system configuration and software.

PCRs start zeroed out and can only reset with a system reboot. Those can be extended by writing a SHA hash (typically
SHA-1/256/384/512 for TPMv2) into the PCR. To store a new value in a PCR, the existing value is extended with a
new value as follows: PCR[N] = HASHalg(PCR[N] || ArgumentOfExtend)

Trusted Substrate is designed to work with either discrete TPMs or provide an [fTPM] running in OP-TEE.

10.3 LUKS2 disk encryption

If a TPM is present on the device TRS will automatically detect it. If secure boot is enabled, then TRS will generate a
random password on first boot, seal it against PCRs 7 and encrypt the root filesystem using aes-xts-plain.

TRS is designed to work regardless of the TPM implementation. We support devices with a discrete TPM, an [fTPM]
or for QEMU a [SWTPM]

44 Chapter 10. Features

TRS Documentation

Note: You can find a full list of the components and recipes needed by running make find name=ledge-initramfs

10.3. LUKS2 disk encryption 45

TRS Documentation

10.3.1 LUKS2 Encryption

46 Chapter 10. Features

TRS Documentation

10.3.2 LUKS2 Decryption

10.3. LUKS2 disk encryption 47

TRS Documentation

10.4 OP-TEE OS

OP-TEE is our Secure World OS of choice in TRS. We use it for a number of reasons with the most notable ones being

• Run [fTPM] is the hardware doesn’t have a discrete TPM.

• Store EFI variables on boards that have an RPMB.

• Provide a DRBG if the hardware doesn’t provide a TRNG.

• Provide a PKCS#11 provider to PARSEC.

Conceptually the components interacting with OP-TEE in the TRS build can be seen in the image below. The Features
lane there indicates which exceptions levels are involved in a certain use case. For example, “TEE: Secure Storage” is
all kept in (S)EL-0 and (S)EL-1.

Note that this image is rather generic as depicted here. We have other areas that could (and should) be added as well,
for example SCMI, Xen, FF-A, SwTPM to name a few. But perhaps it’s better to add them as separate diagrams to avoid
making the images too complex.

48 Chapter 10. Features

TRS Documentation

10.5 Xen

When Xen is enabled, GRUB menu provides an entry TRS Xen (if supported) for booting Xen hypervisor.

Xen hypvervisor’s EFI program and configuration file (xen.cfg) both are placed in the root folder of boot parition. The
configuration file contains the info for Xen’s log debugging level, Linux kernel image path and Linux kernel command
line, etc; Xen hypvervisor parses the configuration file and boot Linux kernel image.

Note, Xen hypervisor doesn’t load initial ramdisk, this is different from the booting flow in bare metal mode which
loads both initial ramdisk and Linux kernel image.

SPDX-License-Identifier: MIT

[global]
default=xen

[xen]
options=noreboot dom0_mem=4096M bootscrub=0 iommu=on loglvl=error guest_loglvl=error
kernel=Image console=hvc0 earlycon=xenboot rootwait root=PARTUUID=f3374295-b635-44af-
→˓90b6-3f65ded2e2e4

After the system booting up, we can use the command xl list to list Xen domains, the Xen Dom0 with naming Domain-0
is created by default.

root@trs-qemuarm64:~# xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 4096 32 r----- 63.2

At this time the goal is to use the same rootfs when booting Dom0 and DomU. The root file system in Xen Dom0
doesn’t contain anything for Xen DomU, otherwise, we will run into the nested issue for building TRS image. For this

10.5. Xen 49

TRS Documentation

reason, we need to take several steps to deploy virtual machine with Xen DomU, below gives instructions for how to
do it.

Firstly, you need to create a virtual machine configuration file ewaol-guest-vm1.cfg:

Copyright (c) 2022, Arm Limited.
#
SPDX-License-Identifier: MIT

name = "ewaol-guest-vm1"
memory = 6144
vcpus = 4
extra = " earlyprintk=xenboot console=hvc0 rw"
root = "/dev/xvda2"
kernel = "/boot/Image"
disk = ['format=qcow2, vdev=xvda, access=rw, backendtype=qdisk, target=/usr/share/guest-
→˓vms1/trs-vm-image.rootfs.wic.qcow2']
vif = ['script=vif-bridge,bridge=xenbr0']

The configuration file ewaol-guest-vm1.cfg can be saved into the folder /etc/xen/auto/ so the virtual machine can be
automaticially launched in later’s booting.

Secondly, we need to copy TRS root file system image to target. In below example, we firstly create a folder
/usr/share/guest-vms1/ on the target:

root@trs-qemuarm64:~# mkdir -p /usr/share/guest-vms1/

Then we copy TRS’s qcow2 image from the host to the target, please replace <IP_ADDRESS> with your target’s IP
address.

$ cd trs-workspace/build/tmp_trs-qemuarm64/deploy/images/trs-qemuarm64
$ scp trs-image-trs-qemuarm64.wic.qcow2 root@<IP_ADDRESS>:/usr/share/guest-vms1/trs-vm-
→˓image.rootfs.wic.qcow2

No need to copy kernel image, the virtual machine can reuse the same kernel image with the Xen Dom0 which has
been already placed in /boot/Image.

With above preparations, it’s ready for luanching the virtual machine in Xen domU. We can create a virtual machine
with command:

root@trs-qemuarm64:~# xl create /etc/xen/auto/ewaol-guest-vm1.cfg

After created the virtual machine, we can list all Xen domains:

root@trs-qemuarm64:~# xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 4096 32 r----- 63.2
ewaol-guest-vm1 1 6143 4 r----- 4.5

We can see a new domain ewaol-guest-vm1 running in Xen DomU (ID is 1 with 4 virtual CPUs).

For accessing a Xen DomU’s console, you could use the command xl console followed by a domain name, below is an
example:

root@trs-qemuarm64:~# xl console ewaol-guest-vm1

Afterwards, you could input ctrl-[to exit from Xen DomU’s console and return back to Xen Dom0.

50 Chapter 10. Features

TRS Documentation

Known issue1: Currently Xen hypervisor is only supported for ADLink AVA platform.

Known issue2: Xen hypvervisor loads kernel image but it doesn’t load initial ramdisk.

Known issue3: TPM is not supported by Xen Dom0. If the system runs into the normal booting flow with GRUB menu
entry TRS, the root file system image will be encrypted with TPM; afterwards when we switch back to Xen, it cannot
reuse the root file system image due to Xen not supporting TPM at the current stage.

10.5. Xen 51

TRS Documentation

52 Chapter 10. Features

CHAPTER

ELEVEN

THREAT MODELS

We’re leveraging the MITRE D3FEND threat model matrix as a basis for the threat modeling work in the TRS. Although
MITRE D3FEND is more aimed at regular PC use, we believe it is a good and comprehensive summary of potential
attacks to a lot of use cases in TRS. MITRE D3FEND covers the generic type of threats. In addition to that we will
also identify the specific threats based on the assets that we’re trying to protect. Re-use is key here, the first use-cases
that we implement will cover quite a bit of mitigation techniques. For new use cases we anticipate that these should be
able to leverage mitigations already implemented for other use cases.

11.1 Use cases

11.1.1 1. Attested containers

Assets

Table 1: Assets in attested containers
Asset Description
Private key(s) used to sign the container images. Private keys will be used to sign the container images.
Public key(s) used to verify signature. Although not secret, they must be immutable in the sys-

tem.
PCR registers in the TPM They tell the true and expected state of a system.
Audit log files Files under /var/... tracking events in the form of au-

dit logs.
Authentication Tokens When leveraging backends, it’s common to get an autho-

rization token from the backend provider.
Environment variables Tokens and passwords sometimes needs to be stored in

environment variables.
Kernel command line Information provided via Linux kernel commandline

could be vital (for the security of the system).
U-Boot commandline Should be locked down on a production system to avoid

system modification.

53

https://d3fend.mitre.org

TRS Documentation

54 Chapter 11. Threat models

TRS Documentation

Hardening

Table 2: Threat model attested containers
Threat Description Mitigation
Insecure configuration (D3-ACH) Software sometimes comes with de-

fault configurations that aren’t se-
cure.

• Follow the TF-A, OP-TEE,
TPM (fTPM) recommended
configurations for building a
secure product.

• Follow recommendations
telling how to configure OCI-
based containers for security
oriented end products.

Physical access to configuration The device can be deployed in a
location where people have physi-
cal access to the device, which also
means that they might try to change
configurations.

• Boot time integrity checking of
configurations.

• Run-time integrity checking of
configurations using for exam-
ple IMA (D3-FH).

Bootloader Authentication A legitimate user could try to re-
place or modify the firmware bina-
ries.

• Signature verification using
RSA or ECDSA. (D3-BA,
D3-FV)

• Measured boot (D3-TBI)

Corrupting memory An attacker can try to modify mem-
ory to gain control of the execution
(ROP, JOP attacks etc).

• Pointer Authentication (PAC)
- requires Arm v8.3A. (D3-
PAN)

• Branch Target Identification
(BTI) - requires Arm v8.5A.

• Memory Tagging Extension
(MTE) - requires Arm v8.5A.

• Stack Frame Canary Val-
idation (D3-SFCV) us-
ing for example GCC and
-fstack-protector.

• ASLR (D3-SAOR) to random-
ize base addresses.

Disk modification An attacker physically move a disk
or boot the machine in another OS
and then try to alter the content on
the disk.

• Disk Encryption (D3-
DENCR).

Containers accessing host re-
sources

Containers can run with elevated
privleges, which can affect the secu-
rity of the system.

• Avoid using --privileged,
but at least document when us-
ing it and state why it is needed
and what potential risks are.

• Enable Mandatory Access
Control (MAC) in form of
Seccomp, SELinux etc.

• Leverage cgroups to limit the
access to system resources.

Container modification An attack can try to replace or mod-
ify the container. • Sign and verify containers

(also see podman image
trust, podman image
sign).

• Measure containers - Leverage
TPM or fTPM to measure the
containers (extend PCRs).

Security vulnerabilities present in
the container image

The container image may contain
binaries that might have known vul-
nerabilities and could be use as an
exploit.

• Regularly update the binaries
in the container image, so the
binaries in the container image
always is up-to-date.

• Run scanners in the container
image to find vulnerable bina-
ries.

PKI key replacement An attacker could try to change the
public keys used to verify signed im-
ages.

• Make public keys immutable.
• Leverage chain-of-trust all the

way from the boot ROM.
• Use certificates to assure the

owner and origin of a public
key.

Changed PCR values An attacker could try to update PCR
values at random points all the way
from the boot and when the system
is fully up and running. A succes-
ful attack like this would work as
a denial of service attack, since it
wouldn’t be possible to make a suc-
cessful remote attestation.

• Give only administers permis-
sion to update PCRs.

• Enable Mandatory Access
Control (MAC) in form of
Seccomp, SELinux etc.

• Leverage cgroups to limit the
access to system resources.

Network access Open ports and unnecessary ser-
vices may expose an attack surface. • Leverage firewalls.

• Disable unused services.

Leverage debug capabilities On a production system there is
probably no need to have debugging
capabilities enabled by default.

Disable ptrace (Fedora example) or
use other ways to disable the possi-
bility to attach to other processes.

Multitenancy environment A legitimate administrator could get
access to the containers and the con-
tent running inside the container.

This is the case where we need con-
fidential computing support, some-
thing like Arm CCA. However, that
technology is still under develop-
ment, so until then we won’t be able
to do much about. Also, running
things in Realms will be different
compared to running in a container,
so things are not directly comparable.

Establish a reverse tunnel An exploit giving a shell could give
an attacker the opportunity to setup
a reverse tunnel.

Prevent the initiation of outbound
traffic.

DNS spoofing (D3-DNSTA) When use cases consisting of de-
vices communicating with each
other there is a risk that someone
spoof the DNS resolution. Argue-
able there are other mechnisms (sig-
nature verification on download-
ables etc) that would prevent poten-
tial security implications by not pro-
tecting DNS resolution.

Introduce DNSSEC at devices expos-
ing services to clients.

11.1. Use cases 55

https://d3fend.mitre.org/technique/d3f:ApplicationConfigurationHardening
https://sourceforge.net/p/linux-ima/wiki/Home/
https://d3fend.mitre.org/technique/d3f:FileHashing
https://d3fend.mitre.org/technique/d3f:BootloaderAuthentication
https://d3fend.mitre.org/technique/d3f:FirmwareVerification
https://d3fend.mitre.org/technique/d3f:TPMBootIntegrity
https://developer.arm.com/documentation/102433/0100/Return-oriented-programming
https://d3fend.mitre.org/technique/d3f:PointerAuthentication
https://d3fend.mitre.org/technique/d3f:PointerAuthentication
https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/BTI--Branch-Target-Identification
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://d3fend.mitre.org/technique/d3f:StackFrameCanaryValidation
https://d3fend.mitre.org/technique/d3f:SegmentAddressOffsetRandomization
https://d3fend.mitre.org/technique/d3f:DiskEncryption
https://d3fend.mitre.org/technique/d3f:DiskEncryption
https://github.com/containers/podman/blob/main/docs/tutorials/image_signing.md
https://docs.fedoraproject.org/en-US/Fedora/21/html/SELinux_Users_and_Administrators_Guide/sect-Security-Enhanced_Linux-Working_with_SELinux-Disable_ptrace.html
https://d3fend.mitre.org/technique/d3f:DNSTrafficAnalysis
https://www.icann.org/resources/pages/dnssec-what-is-it-why-important-2019-03-05-en

TRS Documentation

11.2 Other projects threat models

11.2.1 TF-A

TrustedFirmware-A (TF-A) gives its analysis for threat model (ARM-TFA-THREAT-MODEL) and provides insecure
configurations to mitigate potential threat. TRS suggests to enable these insecure configurations for a production ready
build, the relevant flags are listed as below.

Table 3: TrustedFirmware-A (TF-A) insecure configurations
Inscure configurations Description
ENABLE_STACK_PROTECTOR=strong Enable the stack protection checks in GCC, the stack

protection level “strong” is suggested.
BRANCH_PROTECTION=1 Enable the branch protection feature, setting to 1 means

“Enables all types of branch protection features”, it re-
quires ARMv8.3 Pointer Authentication and ARMv8.5
Branch Target Identification are supported. Otherwise,
if the CPUs on your platform cannot support one or
both of these two CPU features, you need to select other
values or event disable branch protection with setting
value to 0. The detailed information can be found in the
document ARM-TFA-BUILD-OPTIONS. To be able to
leverage and build this feature, two additional flags needs
to be enabled: CTX_INCLUDE_PAUTH_REGS=1
and ARM_ARCH_MINOR, we must pick the value
for ARM_ARCH_MINOR based on the CPU ar-
chitecture version, e.g. when validate on QEMU
aarch64 with support Armv8.5 architecture, we set
ARM_ARCH_MINOR=5 for this case.

DECRYPTION_SUPPORT=aes_gcm Select the authenticated decryption algorithm for
firmware.

ENCRYPT_BL31=1 Enable encryption for BL31 firmware.
ENCRYPT_BL32=1 Enable encryption for BL32 firmware.
KEY_ALG=rsa / KEY_SIZE=4096 Select the RSA algorithm for the PKCS keys and signing

keys and the key size is 4096. When the large key size
(4096) is used instead of the default key size of 2048, the
product is better protected.

MEASURED_BOOT=1 / EVENT_LOG_LEVEL=10 /
TPM_HASH_ALG

Enables measured boot option MEASURED_BOOT=1
when a platform supports TPM, we can emulate TPM
with the tool swtpm on QEMU platform, the details for
enabling TPM on QEMU can be found in the docu-
ment QEMU-TPM. Setting EVENT_LOG_LEVEL=10
for only printing out TPM error log. TPM are used
not only by TF-A but also by bootloaders and operat-
ing systems, usually the TPM PCR bank algorithm is
chosen by later bootloader, this is reason why TF-A
needs to explicitly specify TPM hash algorithm (e.g. set
TPM_HASH_ALG=sha256) which is chosed by later
bootloader and avoid incompatible issue between them.

DRTM_SUPPORT=1 Enable Dynamic Root of Trust for Measurement
(DRTM).

As a reference, the TF-A recipe (QEMU-AARCH64-RECIPE) will enable above insecure configurations for building

56 Chapter 11. Threat models

https://trustedfirmware-a.readthedocs.io/en/latest/threat_model/index.html
https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/build-options.html#common-build-options
https://qemu.readthedocs.io/en/latest/specs/tpm.html
https://gitlab.com/Linaro/trustedsubstrate/meta-ts/-/blob/master/meta-trustedsubstrate/recipes-bsp/trusted-firmware-a/trusted-firmware-a-tsqemuarm64-secureboot.inc

TRS Documentation

booting images for QEMU aarch64.

11.2.2 OP-TEE

Invoking the TEE from a container

Containers can access the services provided by OP-TEE as long as:

• The OP-TEE client libraries (`optee-client` package) are installed in the container

• The /dev/tee0 device is exposed to the container. With Docker, this is achieved via --device /dev/tee0.
For example:

$ docker run -it --device /dev/tee0 <docker-image>

With such a configuration, only the client side is deployed in the container; all the other components of the TEE are on
the host. This includes:

• The OP-TEE kernel driver

• The MMC RPMB kernel driver (when OP-TEE’s `CFG_RPMB_FS` is enabled)

• The tee-supplicant process

• The files created in the host’s root filesystem by tee-supplicant to provide storage for TEE persistent objects
(when OP-TEE’s CFG_REE_FS is enabled)

• The OP-TEE OS

• The Trusted Applications binaries (`*.ta` files)

More complex configurations are possible, for example:

• Running tee-supplicant in a container. For this dev/teepriv0 has to be shared with the container
via --device /dev/teepriv0. Only one instance of the supplicant process may be running at any given
time, so the host instance has to be stopped before the container is started.

• Loading Trusted Application from a container or moving secure storage into a container. tee-supplicant
loads TAs from /lib/optee_armtz and manages data files for secure storage in /data/tee by default.
Therefore, Docker bind mounts as well as host overlay mounts may be used to compose things in a creative
way.

11.2.3 U-Boot

Unlike TF-A, U-Boot doesn’t give any offical documentation for handling potential threats. Below lists insecure con-
figurations which are suggested by TRS for a production ready build.

11.2. Other projects threat models 57

TRS Documentation

Table 4: U-Boot insecure configurations
Insecure configurations Description
CONFIG_TPM / CON-
FIG_EFI_TCG2_PROTOCOL / CON-
FIG_EFI_TCG2_PROTOCOL_EVENTLOG_SIZE

Support TPM device on the platform, and enabling
EFI_TCG2 configurations to produce EventLog with the
TPM.

CONFIG_TEE / CONFIG_RNG_OPTEE Enable driver for OP-TEE and create connection with
secure world’s OP-TEE firmware. Enable the OP-TEE
based Random Number Generator.

CONFIG_EFI_RUNTIME_UPDATE_CAPSULE
/ CONFIG_EFI_CAPSULE_FIRMWARE / CON-
FIG_EFI_CAPSULE_FIRMWARE_RAW / CON-
FIG_EFI_CAPSULE_FIRMWARE_FIT

With these configurations, we can update
the U-Boot image using the UEFI firmware
management protocol (fmp). Enable CON-
FIG_EFI_CAPSULE_FIRMWARE_FIT to support FIP
image with using the same protocol.

CONFIG_CMD_EFICONFIG / CON-
FIG_CMD_BOOTMENU / CON-
FIG_AUTOBOOT_MENU_SHOW / CON-
FIG_BOOTMENU_DISABLE_UBOOT_CONSOLE

Enable the first three configurations
CONFIG_CMD_EFICONFIG and CON-
FIG_CMD_BOOTMENU, U-Boot supports UEFI
menu interface. After enabled the configura-
tion CONFIG_AUTOBOOT_MENU_SHOW,
UEFI menu can be shown up automatically. To
only disply UEFI menu and disable U-Boot
console, we can enable the configuration CON-
FIG_BOOTMENU_DISABLE_UBOOT_CONSOLE,
in this case, we also need to remove configuration
CONFIG_PREBOOT so can avoid adding boot man-
ager entry in UEFI menu. Please see the details in the
document UBOOT-EFICONFIG.

CONFIG_SILENT_CONSOLE With configuration CONFIG_SILENT_CONSOLE
and append “silent=1” into the U-Boot envi-
ronment (e.g. append it into the macro CON-
FIG_EXTRA_ENV_SETTINGS), we can totally
mute console for U-Boot.

11.2.4 TPM

11.2.5 Firmware TPM

11.2.6 OCI

11.3 Links

• https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8320B.pdf

58 Chapter 11. Threat models

https://u-boot.readthedocs.io/en/latest/usage/cmd/eficonfig.html?highlight=EFICONFIG
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8320B.pdf

BIBLIOGRAPHY

[UEFI] Unified Extensable Firmware Interface Specification v2.9, February 2020, UEFI Forum

[EBBR] Embedded Base Boot Requirements v2.0.0-pre1, January 2021, Arm Limited

[fTPM] Firmware TPM, August 2016, Microsoft

[SWTPM] Software TPM

59

https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf
http://www.uefi.org
https://arm-software.github.io/ebbr/
http://arm.com
https://www.microsoft.com/en-us/research/publication/ftpm-software-implementation-tpm-chip/
http://www.microsoft.com
https://github.com/stefanberger/swtpm

TRS Documentation

60 Bibliography

INDEX

D
db, 39
dbx, 39

E
EBBR, 39
ESP, 39

F
FSBL, 39

K
KEK, 39

P
PK, 39

R
RPMB, 39

T
TCG, 39
TPM, 39

U
UEFI, 39

61

	About TRS
	Goals and key properties
	Firmware Software Components
	Releases
	v0.2 - 2023-03-07
	v0.1 - 2022-12-16
	v0.1-beta - 2022-09-02

	Getting started
	Manual installation
	1. Install repo
	2. Getting the source code
	For latest, do this
	For a specific release, do this

	3. Installing prerequisites
	Host packages
	Python packages

	4. Building
	4.1 Support virtualization with Xen (Optional)
	4.2 Build firmwares and TRS image

	5. Target specific installation
	5. Tips and tricks
	5.1 Reference local mirrors
	5.2 Local manifests

	Docker Install
	Container Configuration
	Tested Environments
	Host Prerequisites
	Installation instructions
	1. Clone the TRS repository (Host)
	2. Build Docker Image (Host)
	3. Download and sync the TRS source using Repo tool (Host)
	4. Create and enter the Container (Host)

	Run on bare-metal
	Flashing the firmware
	Prepare USB stick with TRS
	Boot TRS

	Install QEMU
	Run
	Test

	TRS recipes
	FAQ
	My board only has an SD card
	Q: How to increase OP-TEE core log level?
	Q: How to modify optee-os sources locally and rebuild?
	Q: Why is the internal eMMC not detected?
	Q: How to skip initramfs and boot to rootfs directly?
	Q: On boot, the kernel logs warnings about GPT, how to fix them?
	Q: On boot, the kernel logs “EXT4 … recovery complete”, what’s wrong?
	Q: symbolize.py for TAs (on e.g., the fTPM TA) prints DWARF warnings and no source file/line info.
	Q: My board randomly hangs or crashes under system load.

	Firmware
	Trusted Substrate
	Hardware and Software
	Supported Platforms
	Software Components
	Board Support
	Supported platform features

	Build and install
	Getting the firmware
	Building from source
	Prerequisites for meta-ts
	Building meta-ts from source

	Downloading board binaries
	Building with your own certificates

	Installing firmware
	QEMU arm64
	SynQuacer
	stm32mp157c dk2 or ev1
	rockpi4b
	Raspberry Pi4
	Xilinx KV260 AI Starter kit

	Updating the firmware
	Generating capsules
	Applying capsules from the command line
	Applying capsules from the OS

	Configuration and OS booting
	Configuring UEFI variables
	Enabling Secure Boot
	Create certificates and keys
	Enable Secure Boot
	Disable Secure Boot

	Running a distro
	Download TRS
	Running TRS
	Running TRS without GRUB
	Run on QEMU arm64
	Run on SynQuacer
	Run on stm32mp157c dk2 or ev1
	run on rockpi4b
	Run on Raspberry Pi4
	Run on Xilinx KV260 AI Starter and Commercial kit

	References
	Terms and abbreviations

	Features
	Secure Boot
	Hardware and UEFI variable limitations

	Measured Boot
	Trusted Platform module

	LUKS2 disk encryption
	LUKS2 Encryption
	LUKS2 Decryption

	OP-TEE OS
	Xen

	Threat models
	Use cases
	1. Attested containers
	Assets
	Hardening

	Other projects threat models
	TF-A
	OP-TEE
	Invoking the TEE from a container

	U-Boot
	TPM
	Firmware TPM
	OCI

	Links

	Bibliography
	Index

