

Contents

	Introduction
	Goals and key properties

	High-level overview

	Firmware software components

	Use-cases and features overview

	TRS system architectures

	Feedback and support

	Maintainer(s)

	User Guide
	Initial setup
	repo

	Getting the source code

	Getting the host packages

	Initial sourcing

	Tips and tricks

	Targets
	QEMU setup

	Baremetal

	Docker

	Extend

	Developer Manual
	System Architectures
	Baremetal architecture

	Virtualization architecure

	User Accounts

	Build System
	Target Platforms

	Distribution Image Features

	Yocto Layers
	TRS recipes

	Security
	Hardening Flags

	Threat models

	Links

	Features
	TRS features

	Technologies and software

	Firmware - Trusted Substrate
	Trusted Substrate

	Hardware and Software
	Supported Platforms

	Build and install
	Getting the firmware

	Installing firmware

	Updating the firmware

	Configuration and OS booting
	Configuring UEFI variables

	Running a distro

	References

	Terms and abbreviations

	Codeline Management
	Release process

	Release cadence

	Branches

	Contributing
	Contribution Guidelines
	Forking

	Merge Request

	Commit messages

	License
	SPDX Identifiers

	Changelog & Release Notes
	v0.3 - 2023-04-19

	v0.2 - 2023-03-07

	v0.1 - 2022-12-16

	v0.1-beta - 2022-09-02

Introduction

Developing software on its own is complicated and requires time, skills and lots
of efforts. But being good at writing individual software isn’t sufficient in
this day and age. Systems are inherently complicated, with lots of components
interacting with each other. We have to deal with intracommunication as well as
external communication with remote systems. All aspects of security have to be
considered, standards need to be addressed and systems need to be tested not
only as individual components, but as coherent systems. For device
manufacturers, this becomes a real challenge, which is very costly both in terms
of time and effort.

As an answer to the challenges presented, Linaro has created TRS (Trusted
Reference Stack), an umbrella project and software stack that includes well
tested software. Its components make up a solid base for efficient development
and for building unique and differentiating end-to-end use cases.

Goals and key properties

	Common platform for deliverables from Linaro.

	Include all Linaro test suites and test frameworks making CI/CD and regression
testing fast, valuable and efficient.

	An efficient development environment for engineers.

	A product ready reference implementation.

	Configurable to be able to meet different needs.

	Common ground and building blocks for Blueprints and similar targets.

	Interoperability making it possible to use alternative implementations.

	Pre-silicon IP support in environments like QEMU etc.

High-level overview

The TRS software stack is made up of application software that spans all
architectural layers, from low-level programs that communicate directly with
hardware to the user-space environment. To make it a flexible solution and be
able to partition workloads, it also has support for running applications either
as containerized applications or as virtual machines. The image below shows a
high level overview of the key components in TRS.

[image: High level overview of the TRS architecture]

Firmware software components

Firmware in TRS is provided by Trusted Substrate, which has its own dedicated
area in this documentation (see Firmware - Trusted Substrate).

Use-cases and features overview

	Deployment of application workloads via Docker, Podman and k3s.

	Orchestration of resource-managed and isolated application workloads via
Docker, K3s, and the Xen type-1 hypervisor providing hardware virtualization.

	Remote updates for all software components, to be able to address security
issues, fix bugs and add features. Includes optional A/B updates.

	Measured boot to facilitating sealed keys technologies.

	Encrypted filesystem to meet confidentiality needs.

	Remote attestation to be able to trust and be trusted by remote parties.

	Using backend devices via VirtIO interfaces.

	Early development of new architectural features.

	Ability to load different OSes and distros without hard coded dependencies to
firmware (EBBR, SystemReady).

	General Arm ecosystem enablement.

	Regression testing on merge requests and on daily builds.

TRS system architectures

TRS is compatible with both bare-metal and virtualized environments. This allows
TRS to be utilized for a variety of application cases. When needed on typical
embedded devices, baremetal is likely the best option; but, if you need to run
multiple payloads, operating systems, etc., virtualization architecture may be a
better fit. In the section System Architectures, you will find a detailed
overview of the two different architectures.

Feedback and support

To request support please contact Linaro at support@linaro.org.

Maintainer(s)

	Joakim Bech <joakim.bech@linaro.org>

	Ilias Apalodimas <ilias.apalodimas@linaro.org>

	Mikko Rapeli <mikko.rapeli@linaro.org>

User Guide

Initial setup

	Initial setup

Covers the steps necessary to configure your host system to develop and deploy
TRS onto supported devices.

Device specific setup

	Targets

Describes how to work with various devices.

Customizations for unsupported targets

	Extend

Describes how TRS may be customized and run on unsupported target platforms.

Initial setup

To be able to build TRS, we must take a few steps to prepare our host
environment. Typically, this involves installing a few essential packages and
initializing scripts to setup paths etc. Following the steps listed here should
result in a host environment capable of building, deploying, and running
software on an emulated environment such as QEMU or on one of the TRS-supported
devices.

It is important to note that it is difficult to provide completely accurate
instructions since there are so many Linux distributions, each with subtle
variations. They have distinct package managers, various package naming
conventions and different package versions. So, our instructions have been
mostly tested with Ubuntu LTS and, now, with Ubuntu 22.04 LTS.

repo

For more than a decade now, repo has been the Android tool responsible for
checking out groups of individual git repositories that make up a larger
project or product. At its core, repo reads manifest files, which are xml-files
that include URLs to remote servers hosting gits. In the xml-files, we also
find the names of the gits used in a project, as well as the branch or
commit we’re tracking.

repo is very configurable, but we use it mostly to obtain the source code for
our development builds and to generate stable releases. Repo’s excellent method
of leveraging local mirrors, which considerably reduces setup time and saves a
substantial amount of disk space, was a major factor in the decision to use it.
How this is accomplished is described in depth later in this paper.

Install repo

Notice that here you do not install a massive SDK; instead, you just download a
Python script and place it in your $PATH variable. See the Google repo [https://source.android.com/docs/setup/develop#installing-repo]
sites for specific instructions on “installing” repo before proceeding.

Getting the source code

This step gets the code necessary to build TRS. You may either checkout a
version tracking the latest on all gits (a “developer setup”), or you can
checkout a specific release. The difference is shown in the highlighted repo
init lines in the examples below, where you provide different branch names and
manifest files.

Developer setup

 $ mkdir trs-workspace
 $ cd trs-workspace
 $ repo init -u https://gitlab.com/Linaro/trusted-reference-stack/trs-manifest.git -m default.xml
 $ repo sync -j3

Release build

 $ mkdir trs-workspace
 $ cd trs-workspace
 $ repo init -u https://gitlab.com/Linaro/trusted-reference-stack/trs-manifest.git -m default.xml -b <release-tag>
 $ repo sync -j3

Getting the host packages

As previously explained, various host packages are needed for building TRS.
These packages are a combination of distribution packages and a few required
Python packages. The distribution packages will be installed with the host’s
package manager, while the Python packages will be installed with pip. The
latter are only required to build the documentation.

Distribution packages

Your sudo password will be required to complete the steps listed here.

Ubuntu 22.04 LTS
$ cd <workspace root>
$ make apt-prereqs

This will install the following packages:

acpica-tools
adb
autoconf
automake
bc
bison
build-essential
ccache
chrpath
cloud-guest-utils
cpio
cscope
curl
device-tree-compiler
diffstat
expect
fastboot
file
flex
ftp-upload
gawk
gdisk
inetutils-ping
iproute2
libattr1-dev
libcap-dev
libfdt-dev
libftdi-dev
libglib2.0-dev
libgmp3-dev
libhidapi-dev
libmpc-dev
libncurses5-dev
libpixman-1-dev
libssl-dev
libtool
locales-all
lz4
make
mtools
netcat-openbsd
ninja-build
pip
plantuml
python-is-python3
python3-cryptography
python3-pexpect
python3-pip
python3-pyelftools
python3-serial
python3-venv
qemu-system-aarch64
rsync
sudo
unzip
uuid-dev
wget
xdg-utils
xterm
xz-utils
zlib1g-dev
zstd

The package list comes from Yocto documentation [https://docs.yoctoproject.org/singleindex.html#build-host-packages]. Make sure to check the
documentation if a build error is produced because of a missing package.

Python packages

Note

Python packages are not required to build TRS images. Follow this step only if
you plan to change and test TRS documentation.

All Python packages are installed by default in <workspace root>/.pyvenv
using a virtual Python environment. The advantage of doing so is that there will
be no traces of the Python packages required for TRS if we delete the
.pyvenv folder. This approach may eventually avoid conflicts with
other tools that require other versions of some Python packages.

$ cd <workspace root>
$ make python-prereqs

Initial sourcing

Newly installed Python packages have to be made available to the virtual Python
environment by sourcing the “activate” script.

Note

Here, you only need to do the “sourcing” step once per shell where you want
to start the build. This means that if you forget to run this after
spawning a new shell, your build will likely fail.

$ source <workspace root>/.pyvenv/bin/activate

Start the build

Next, we start the build, which will likely take a few hours on a standard
desktop machine the first time you build it with no caches primed. The TRS is
based on multiple Yocto layers and if you don’t already have the environment
variables DL DIR and SSTATE DIR set, they will be set to $HOME/yocto
cache by default. Note that, make clean does not clear the download and
sstate caches and therefore doesn’t affect the build time negatively. The
actual build is started by the following:

$ cd <workspace root>
$ make

After following the steps above, please continue with the target specific
instructions, which you will find in the navigation menu to the left.

Tips and tricks

Reference local mirrors

As the project grows, the time required to do the initial repo sync
increases. The repo tool can reference a locally cloned forest and clone the
majority of the code from there, taking just the eventual delta between local
mirrors and upstream trees. To do this, add the argument --reference to the
repo init command, for instance:

$ repo init -u https://... --reference <path-to-my-existing-forest>

Use local manifests

In some cases we might want to use another remote, pick a certain commit or
even add another repository to the current repo setup. The way to do that with
repo is to use local manifests [https://gerrit.googlesource.com/git-repo/+/master/docs/manifest-format.md#Local-Manifests]. The end result would be the same as
manually clone or checkout a certain tag or commit. The advantage of using a
local manifest is that when running repo sync, the original manifest will
not override our temporary modifications. I.e., it’s possible to reference and
keep using a temporary copy if needed.

Targets

QEMU setup

This document describes how to run TRS for the QEMU target. It is assumed that
you have completed the procedures outlined on the Initial setup page and
at least built the firmware for the tsqemuarm64-secureboot target and the
trs image. If not, begin there before proceeding.

Run

After the build is complete, you will be able to run it on your host system
using QEMU.

$ make run

U-Boot is already set to boot the current kernel, initramfs, and rootfs upon
initial startup.

Hint

To quit QEMU, press Ctrl-A x (alternatively kill the qemu-system-aarch64 process)

If everything goes as planned, you will be greeted with a login message and a
login prompt. The login name is ewaol as depicted below.

ledge-secure-qemuarm64 login: ewaol
ewaol@ledge-secure-qemuarm64:~$

Test

Once the build has been completed, you can run automatic tests with QEMU. These
boot QEMU using the compiled images and run test commands via SSH on the running
system. While the QEMU image is running, SSH access to it works via localhost IP
address 127.0.0.1 and TCP port 2222. TEST_SUITE variable in
trs-image.bb recipe define which tests are executed.

$ cd <workspace root>
$ make test

See Yocto runtime testing documentation [https://docs.yoctoproject.org/singleindex.html#performing-automated-runtime-testing] for details about the test
environment and instructions for writing new tests [https://docs.yoctoproject.org/singleindex.html#writing-new-tests].

Baremetal

This section will explain how to run TRS on hardware. There are primarily two
steps that must be taken. We should a) flash the device firmware to a suitable
medium and b) prepare a USB disk with the operating system.

Flashing the firmware

The firmware of a device is unique to that device. As a result, each supported
device has its own set of tools and requirements to follow when writing the
firmware. Device specific flashing instructions for TRS supported devices can
be found at the Installing firmware page.

Warning

If the firmware is to be flashed on an SD card, the SD card should be found
under /dev/sdX, where X is a letter associated to the card as recognized
by the host system (ex. /dev/sda or /dev/sdb).

Flashing the OS and rootfs

TRS builds an OS and a root filesystem that are compatible with all devices, as
opposed to the device firmware that is device-specific. Therefore, it is
sufficient to write a “wic-file” to a device (eMMC or SD card) in order to
get the OS image and root filesystem onto TRS supported devices. In
TRS, it’s the image named as “trs-image-trs-qemuarm64.wic”, that should be used.
Although the wic-file name contains QEMU, it is the correct one and should be
used for all devices.

$ sudo dd if=build/tmp_trs-qemuarm64/deploy/images/trs-qemuarm64/trs-image-trs-qemuarm64.wic \
 of=/dev/sdX bs=1M status=progress
$ sync

Boot TRS

Plug-in the USB stick, SD-cards and reset the device. If the USB stick or
SD-cards is detected, TRS will boot automatically.

Hint

Prefer USB 3.0+ ports always. If you are experiencing difficulties booting
TRS, interrupt the U-Boot boot sequence and verify that your disk is
identified.

=> usb start
=> usb storage
 Device 0: Vendor: SanDisk Rev: 1.00 Prod: Cruzer Blade
 Type: Removable Hard Disk
 Capacity: 29340.0 MB = 28.6 GB (60088320 x 512)

Docker

This installation method has been created to aid developers in quickly setting
up an initial TRS development environment. By leveraging the scripts and
Dockerfile available in the trs repository [https://gitlab.com/Linaro/trusted-reference-stack/trs/-/tree/main/scripts/docker-scripts], with just a few steps you can
have a TRS-development environment running in a docker container. The benefits
of using a container for your development environment include quickly
reproducing your environment, speed of setup, all devs in a similar
environment, can be customized/extended to meet your needs, usable across
different host platforms, and more.

Container Configuration

This section provides an overview of how this container is set up.

[image: ../_images/TRS-Figure-DockerMapping.png]
Referring to the diagram above:

	The username is dev.

	When logging into the container, it defaults into the pre-determined
$HOME/trs-workspace directory.

	Under $HOME/trs-workspace is the ./build directory that has a
softlink to the $HOME/yocto_cache/ directories.

	This docker configuration provides three shared directories.

	The first, $HOME/trs_reference_repo on the Host is shared with
$HOME/trs-reference-repo in the container. This allows a user to keep
it updated from the host side and potentially be shared by multiple
containers.

	The second and third directories are tied to the creation of a Yocto build
cache, also to reduce build times. These default to $HOME/yocto_cache
on the host and container. Two subdirectories are created under
$HOME/yocto_cache. These are $HOME/yocto_cache/sstate-cache and
$HOME/yocto_cache/downloads

	The default directories/shares described above may of course all be
customized by modifying the Dockerfile and scripts, but note that the naming
must be assured to be consistent in all the files.

Tested Environments

The instructions/scripts in this section have been verified against Ubuntu
22.04 desktop machine and a share server environment also based on Ubuntu 20.04.

Host Prerequisites

Assure that Docker has been installed on your Host development machine

$: docker --version;
Docker version 20.10.19, build d85ef84;

Note

These instructions assume the user name is dev.

Installation instructions

Since there are instructions for both the Host running Docker and the Container
that will have the Ubuntu 20.04 TRS development environment set up, the
following sections will delineate the difference by using “Host” or “Container”
in the header. That way a user will know where the commands are intended to
run.

1. Clone the TRS repository (Host)

Cloning the repo to be able to easily grab the scripts.

$ cd ~
$ mkdir trs-repo
$ cd trs-repo
$ git clone https://gitlab.com/Linaro/trusted-reference-stack/trs.git

Optionally check that the Dockerfile and scripts are present:

$ ls ~/trs-repo/trs/scripts/docker-scripts
Dockerfile run-trs.sh trs-install.sh

2. Build Docker Image (Host)

Create a docker image, named trs.

$ cd ~/trs-repo/trs/scripts/docker-scripts
$ docker build -t trs .

Note

The above defaults to a UID/GID of 1000/1000; typical of an Ubuntu
Desktop. If the host has a different UID/GID and it’s desired for the
container to have the same, use the following command instead of the one
above:

$ cd ~/trs-repo/trs/scripts/docker-scripts
$ docker build --build-arg USER_UID=$(id -u) --build-arg USER_GID=$(id -g) -t trs .

Hint

During a docker build, it’s not uncommon to see warnings such as the
following that can be ignored, for example:

WARNING: apt does not have a stable CLI interface. Use with caution in
scripts.

Optionally, after completion of the docker build, you can confirm that the
images are there and look OK. Assuming you had no other docker images, you
should see something similar to the following:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
trs latest 2a10a95eacd2 10 seconds ago 336MB
ubuntu 22.04 a8780b506fa4 4 weeks ago 77.8MB

3. Download and sync the TRS source using Repo tool (Host)

As described above, the Host and Container share the TRS repo in a shared
directory. This section sets up this share TRS repo with the following
commands.

$ cd ~
$ mkdir trs_reference_repo
$ cd trs_reference_repo
$ repo init -u https://gitlab.com/Linaro/trusted-reference-stack/trs-manifest.git -m default.xml
$ repo sync

With all the above steps completed, we’re now ready to launch the TRS
container!

Warning

The location above is important as this is a shared folder between the Host
and the Container. If the user chooses to change this location, the
scripts/Dockerfile must be updated to align.

4. Create and enter the Container (Host)

The following commands will launch the container using the Dockerfile built in
the earlier steps

$ cd ~/trs-repo/trs/scripts/docker-scripts
$ docker build -t trs .
$./run-trs.sh

dev@2d0b8419dac3:~/trs-workspace$

A new prompt will be shown in your terminal similar to the above and you’re now
working in the docker container!

Optionally, from the Container, some quick checks can be executed to assure
that the container is set up right. This includes assuring all the shares have
permissions set correctly, and that the build directory is linked to the
yocto_cache directory using a soft link.

dev@92fae72fafee:~/trs-workspace$ ls -l
total 8
drwxr-xr-x 1 dev dev 4096 Jan 27 21:22 build
-rwxrwxr-x 1 dev dev 1936 Jan 27 20:41 trs-install.sh
dev@92fae72fafee:

dev@2d0b8419dac3:~/trs-workspace$ ls -l build
total 0
lrwxrwxrwx 1 dev dev 31 Jan 27 21:22 downloads -> /home/dev/yocto_cache/downloads
lrwxrwxrwx 1 dev dev 34 Jan 27 21:22 sstate-cache -> /home/dev/yocto_cache/sstate-caches
dev@92fae72fafee:

dev@2d0b8419dac3:~/trs-workspace$ ls -l ~
total 16
drwxrwxr-x 17 dev dev 4096 Jan 19 23:26 trs-reference-repo
drwxr-xr-x 1 dev dev 4096 Jan 27 21:27 trs-workspace
drwxr-xr-x 1 root root 4096 Jan 27 21:21 yocto_cache

dev@92fae72fafee:~/trs-workspace$ ls ~/yocto_cache -l
total 80
drwxrwxr-x 4 dev dev 73728 Jan 27 22:05 downloads
drwxrwxr-x 259 dev dev 4096 Jan 27 21:28 sstate-cache

dev@2d0b8419dac3:~/trs-workspace$

dev@92fae72fafee:~/trs-workspace$ ping google.com
PING google.com (142.250.188.238) 56(84) bytes of data.
64 bytes from lax31s15-in-f14.1e100.net (142.250.188.238): icmp_seq=1 ttl=116 time=31.7 ms
64 bytes from lax31s15-in-f14.1e100.net (142.250.188.238): icmp_seq=2 ttl=116 time=29.2 ms
64 bytes from lax31s15-in-f14.1e100.net (142.250.188.238): icmp_seq=3 ttl=116 time=26.4 ms
^C
--- google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 26.419/29.119/31.708/2.160 ms
dev@92fae72fafee:~/trs-workspace$ ^C
dev@92fae72fafee:~/trs-workspace$

If the user, group and shares all look good and a ping verified we have
connectivity to the internet, then we’re ready to move on to the final step,
which is performing a TRS build!

5. Build TRS (Container)

To verify everything is correct, perform a build by executing the
./trs-install.sh -h -r command. Be sure to include the -h -r options
when kicking off the build script for the build to work correctly.

dev@92fae72fafee:~/trs-workspace$./trs-install.sh -h -r
Using Yocto cache from host
Using reference from host
Downloading Repo source from https://gerrit.googlesource.com/git-repo
repo: Updating release signing keys to keyset ver 2.3
warning: gpg (GnuPG) is not available.
warning: Installing it is strongly encouraged.

repo has been initialized in /home/dev/trs-workspace
Fetching: 71% (10/14) Linaro/trusted-reference-stack/trs.git
...

Note

This build currently requires several hours to complete. There will be a
number of warnings during the build, but this is OK. If completes
successfully, then you’ll see a message prior to returning to the prompt
similar to the following:

Summary: There were 4 WARNING messages.
Build succeeded, see output in build/tmp_trs-qemuarm64/deploy directories.
dev@92fae72fafee:~/trs-workspace$

Once the build succeeds, the user can perform a final verification step, which
is to execute the steps in the QEMU setup section of this document.

Extend

TBD

Developer Manual

Contents

	System Architectures

	User Accounts

	Build System

	Yocto Layers

	Security

	Features

System Architectures

From a high level, TRS provides two main variants, the baremetal variant and the
virtualization variant. Both are built from the same sources with minor
modifications.

Baremetal and virtualization are two independent software deployment strategies
for computer systems. Baremetal refers to the installation and running of an
operating system without any intervening software layers. In other words, the
OS directly interacts with the machine’s physical hardware, including the CPU,
memory, storage, and networking devices etc.

Virtualization, on the other hand, involves the creation of one or more virtual
machines (VMs) that run on top of a hypervisor, which is a software layer that
abstracts the underlying physical hardware and exposes it to the VMs as a set of
virtual hardware components. Each VM have the ability to run its own operating
system, which interacts with the hypervisor’s virtual hardware. This
essentially means that it is possible to run several different operating
systems concurrently on the same physical hardware.

So, baremetal systems communicate directly with the real hardware, whereas
virtualized systems communicate with the hypervisor’s virtual hardware.
Ultimately, the decision between bare metal and virtualization is determined by
the individual use case and system requirements. Virtualization is often used in
data centers and other business contexts where flexibility, administration, and
effective resource utilization are essential. But there is a trend where other
markets started looking at running virtualized environments. Automotive is one,
but we’ve even seen that mobile handset have use cases where they want to
leverage virtual environments for various workloads.

Since TRS have the ability act as both baremetal and a virtualized architecture,
with and without using container technologies, we believe that TRS is well
suited for a lot of use cases and scenarios.

Baremetal architecture

Conceptually, TRS has code running in every architectural layer. With an Armv8-A
device, this means that code will run on all exception levels on both the
non-secure and secure (TrustZone) side. The diagram below does not show a
typical image with secure and non-secure sides and exception levels; rather, it
is intended to provide a quick overview of the kinds of building blocks we are
likely to see being used in an TRS baremetal setup.

At the very top, we have (OCI) containerized workloads. Linaro will be able to
provide workload applications designed to solve specific use cases; these are
often included in Arm and Linaro Blueprint offerings. Additional container
images might be directly retrieved from image registries.

The next layer consists of standard Linux tools and apps, which are often
user-space applications or libraries that provide and abstract diverse hardware.
Parsec, for example, is intended to abstract security hardware such as TEE
environments, TPMs, and HSMs, among others. On the security side, we also find
libraries that enable direct communication with OP-TEE. This conforms to
the GlobalPlatform [https://globalplatform.org/specs-library/?filter-committee=tee] Client and Internal API standards. This layer also
contains the numerous test tools and test suites required to guarantee API
correctness, device stability and robustness.

The last software layer consists of the Linux operating system and low-level
hardware. We’ve also included the bootloader, which is mostly utilized during
boot. Yet, even bootloader code has portions that remain resident after the main
operating system gains control. For example, the secure monitor [https://www.arm.com/technologies/trustzone-for-cortex-a/tee-and-smc] code
(BL31) never stops running and the same is true for the OP-TEE OS [https://optee.readthedocs.io/en/latest/architecture/core.html] code,
which provides security features to the main OS for various use cases.

Then at the bottom we’ve included a hardware layer showing the type of devices
that we support in TRS. This is something that will change over time. For an
up-to-date list, please have a look at our CI matrix [https://gitlab.com/Linaro/blueprints/ci/-/blob/main/README.md] that is continuously
updated and shows all the devices that we test on a regular basis.

[image: TRS baremetal architecture]

Virtualization architecure

As for the virtualization architecture, TRS supports hardware virtualization by
using Xen, which is a well-known type-1 hypervisor implementation. If we look
at the block diagram below, we mostly find the same bits and pieces as we saw
in the block diagram for the baremetal architecture. The major difference is
the hypervisor layer that has been included between the hardware and the rest
of the software. The hypervisor layer is responsible for managing the virtual
machines and allocating resources to them. It allows multiple operating systems
to run on the same physical hardware simultaneously. As shown in the block
diagram above, you can also use container applications to run separate
workloads if guest separation isn’t enough.

[image: TRS baremetal architecture]

User Accounts

TRS leverage the EWAOL distribution user configuration, which has defined the
following user accounts:

	root with administrative privileges enabled by default. The login is
disabled if ewaol-security is included in DISTRO_FEATURES.

	ewaol with administrative privileges enabled with sudo.

	user without administrative privileges.

	test with administrative privileges enabled with sudo. This account
is created only if ewaol-test is included in DISTRO_FEATURES.

By default, each users account has disabled password. The default
administrative group name is sudo. Other sudoers configuration is included
in meta-ewaol-distro/recipes-extended/sudo/files/ewaol_admin_group.in.
For virtualization images, above user accounts are created for Control VM and
Guest VM domains.

If ewaol-security is included in DISTRO_FEATURES, each user is prompted
to a set new password on first login. For more information about security see
Security Hardening [https://ewaol.docs.arm.com/en/kirkstone-dev/manual/hardening.html].

All validation_run-time_integration_tests are executed as the test
user.

Build System

Yocto with bitbake is the build engine used to build TRS. However, due to the
fact that a TRS builds various components such as firmware (Trusted Substrate),
root-filesystem, and kernel independently, we have wrapped the setup,
configuration, and build commands in a simple high-level Makefile. That way it
easy for people to get started with TRS by minimizing the number of commands
needed to get it working. Interested parties can also look at the inner
working of the Makefile to better understand how things come together.

Putting it in a Makefile makes it easy to additionally address any build
dependencies, i.e., we can control the build sequence, which may be desirable
and needed for an umbrella project such as TRS.

Target Platforms

TRS supports multiple platforms, including Arm application profiles, execution
states, and extension types. However, TRS use the same OS and root filesystem
image for all devices. Therefore, there is currently not a need to describe the
platforms as such. Refer to the Firmware - Trusted Substrate section to
learn how to configure and build firmware for different target systems.

Distribution Image Features

TRS distro features can be found under ./trs/meta-trs/conf/distro/trs.conf.
In summary we append the following DISTRO_FEATURES in TRS.

grep: ../../meta-trs/conf/distro/trs.conf: No such file or directory

As can be seen, we inherit and use EWAOL’s ewaol-baremetal build for our
baremetal environment. Likewise for our virtualization build, we get Xen by
enabling ewaol-virtualization that can be found in
./meta-ewaol/meta-ewaol-distro/conf/distro/ewaol.conf

Yocto Layers

TBD

TRS recipes

TRS leverage various layers and recipes to build firmware, root filesystem and
various images. The best place to start looking for those recipes is in the
default [https://gitlab.com/Linaro/trusted-reference-stack/trs-manifest/-/blob/main/default.xml] manifest file located in trs-manifest.git [https://gitlab.com/Linaro/trusted-reference-stack/trs-manifest] repository.

Security

Hardening Flags

By enabling the security features established by Project Cassini, TRS
distribution images can be hardened to limit potential sources or vectors of
security vulnerabilities. Currently this is achieved by enabling a couple of
different DISTRO_FEATURES.
to:

	Force password update for each user account after first logging in.
An empty and expired password is set for each user account by default.

	Enhance the kernel security, kernel configuration is extended with the
security.scc in KERNEL_FEATURES.

	Enable the ‘Secure Computing Mode’ (seccomp) Linux kernel feature by
appending seccomp to DISTRO_FEATURES.

	Ensure that all available packages from meta-openembedded,
meta-virtualization and poky layers are configured with:
--with-libcap[-ng].

	Remove debug-tweaks from IMAGE_FEATURES.

	Disable all login access to the root account.

	Sets the umask to 0027 (which translates permissions as 640 for
files and 750 for directories).

Threat models

Note

This threat model section will be reworked and some of the information in here
will be moved over to the firmware section.

We’re leveraging the MITRE D3FEND threat model matrix [https://d3fend.mitre.org] as a basis for the
threat modeling work in the TRS. Although MITRE D3FEND is more aimed at regular
PC use, we believe it is a good and comprehensive summary of potential attacks
to a lot of use cases in TRS. MITRE D3FEND covers the generic type of threats.
In addition to that we will also identify the specific threats based on the
assets that we’re trying to protect. Re-use is key here, the first use-cases
that we implement will cover quite a bit of mitigation techniques. For new use
cases we anticipate that these should be able to leverage mitigations already
implemented for other use cases.

Use cases

Attested containers

Assets

Assets in attested containers

	Asset

	Description

	Private key(s) used to sign the container images.

	Private keys will be used to sign the container images.

	Public key(s) used to verify signature.

	Although not secret, they must be immutable in the system.

	PCR registers in the TPM

	They tell the true and expected state of a system.

	Audit log files

	Files under /var/... tracking events in the form of audit logs.

	Authentication Tokens

	When leveraging backends, it’s common to get an authorization token from
the backend provider.

	Environment variables

	Tokens and passwords sometimes needs to be stored in environment
variables.

	Kernel command line

	Information provided via Linux kernel commandline could be vital (for
the security of the system).

	U-Boot commandline

	Should be locked down on a production system to avoid system
modification.

Hardening

Threat model attested containers

	Threat

	Description

	Mitigation

	Insecure configuration (D3-ACH [https://d3fend.mitre.org/technique/d3f:ApplicationConfigurationHardening])

	Software sometimes comes with default configurations that aren’t secure.

	
	Follow the TF-A, OP-TEE, TPM (fTPM) recommended configurations for building a secure product.

	Follow recommendations telling how to configure OCI-based containers for security oriented end products.

	Physical access to configuration

	The device can be deployed in a location where people have physical
access to the device, which also means that they might try to change
configurations.

	
	Boot time integrity checking of configurations.

	Run-time integrity checking of configurations using for example IMA [https://sourceforge.net/p/linux-ima/wiki/Home/] (D3-FH [https://d3fend.mitre.org/technique/d3f:FileHashing]).

	Bootloader Authentication

	A legitimate user could try to replace or modify the firmware binaries.

	
	Signature verification using RSA or ECDSA. (D3-BA [https://d3fend.mitre.org/technique/d3f:BootloaderAuthentication], D3-FV [https://d3fend.mitre.org/technique/d3f:FirmwareVerification])

	Measured boot (D3-TBI [https://d3fend.mitre.org/technique/d3f:TPMBootIntegrity])

	Corrupting memory

	An attacker can try to modify memory to gain control of the execution
(ROP, JOP attacks etc).

	
	Pointer Authentication (PAC [https://developer.arm.com/documentation/102433/0100/Return-oriented-programming]) - requires Arm v8.3A. (D3-PAN [https://d3fend.mitre.org/technique/d3f:PointerAuthentication])

	Branch Target Identification (BTI [https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/BTI--Branch-Target-Identification]) - requires Arm v8.5A.

	Memory Tagging Extension (MTE [https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf]) - requires Arm v8.5A.

	Stack Frame Canary Validation (D3-SFCV [https://d3fend.mitre.org/technique/d3f:StackFrameCanaryValidation]) using for example GCC and
-fstack-protector.

	ASLR (D3-SAOR [https://d3fend.mitre.org/technique/d3f:SegmentAddressOffsetRandomization]) to randomize base addresses.

	Disk modification

	An attacker physically move a disk or boot the machine in another OS and
then try to alter the content on the disk.

	
	Disk Encryption (D3-DENCR [https://d3fend.mitre.org/technique/d3f:DiskEncryption]).

	Containers accessing host resources

	Containers can run with elevated privleges, which can affect the
security of the system.

	
	Avoid using --privileged, but at least document when using it and
state why it is needed and what potential risks are.

	Enable Mandatory Access Control (MAC) in form of Seccomp, SELinux etc.

	Leverage cgroups to limit the access to system resources.

	Container modification

	An attack can try to replace or modify the container.

	
	Sign and verify containers [https://github.com/containers/podman/blob/main/docs/tutorials/image_signing.md] (also see podman image trust, podman image sign).

	Measure containers - Leverage TPM or fTPM to measure the containers
(extend PCRs).

	Security vulnerabilities present in the container image

	The container image may contain binaries that might have known
vulnerabilities and could be use as an exploit.

	
	Regularly update the binaries in the container image, so the binaries in
the container image always is up-to-date.

	Run scanners in the container image to find vulnerable binaries.

	PKI key replacement

	An attacker could try to change the public keys used to verify signed
images.

	
	Make public keys immutable.

	Leverage chain-of-trust all the way from the boot ROM.

	Use certificates to assure the owner and origin of a public key.

	Changed PCR values

	An attacker could try to update PCR values at random points all the way
from the boot and when the system is fully up and running. A succesful
attack like this would work as a denial of service attack, since it
wouldn’t be possible to make a successful remote attestation.

	
	Give only administers permission to update PCRs.

	Enable Mandatory Access Control (MAC) in form of Seccomp, SELinux etc.

	Leverage cgroups to limit the access to system resources.

	Network access

	Open ports and unnecessary services may expose an attack surface.

	
	Leverage firewalls.

	Disable unused services.

	Leverage debug capabilities

	On a production system there is probably no need to have debugging
capabilities enabled by default.

	Disable ptrace (Fedora example [https://docs.fedoraproject.org/en-US/Fedora/21/html/SELinux_Users_and_Administrators_Guide/sect-Security-Enhanced_Linux-Working_with_SELinux-Disable_ptrace.html]) or use other ways to disable the possibility to attach to other
processes.

	Multitenancy environment

	A legitimate administrator could get access to the containers and the
content running inside the container.

	This is the case where we need confidential computing support, something
like Arm CCA. However, that technology is still under development, so
until then we won’t be able to do much about. Also, running things in
Realms will be different compared to running in a container, so things
are not directly comparable.

	Establish a reverse tunnel

	An exploit giving a shell could give an attacker the opportunity to
setup a reverse tunnel.

	Prevent the initiation of outbound traffic.

	DNS spoofing (D3-DNSTA [https://d3fend.mitre.org/technique/d3f:DNSTrafficAnalysis])

	When use cases consisting of devices communicating with each other there
is a risk that someone spoof the DNS resolution. Argueable there are
other mechnisms (signature verification on downloadables etc) that would
prevent potential security implications by not protecting DNS
resolution.

	Introduce DNSSEC [https://www.icann.org/resources/pages/dnssec-what-is-it-why-important-2019-03-05-en] at devices exposing services to clients.

Other projects threat models

TF-A

TrustedFirmware-A (TF-A) gives its analysis for threat model
(ARM-TFA-THREAT-MODEL [https://trustedfirmware-a.readthedocs.io/en/latest/threat_model/index.html]) and provides insecure configurations to
mitigate potential threat. TRS suggests to enable these insecure
configurations for a production ready build, the relevant flags are
listed as below.

TrustedFirmware-A (TF-A) insecure configurations

	Inscure configurations

	Description

	ENABLE_STACK_PROTECTOR=strong

	Enable the stack protection checks in GCC, the stack protection
level “strong” is suggested.

	BRANCH_PROTECTION=1

	Enable the branch protection feature, setting to 1 means
“Enables all types of branch protection features”, it requires
ARMv8.3 Pointer Authentication and ARMv8.5 Branch Target
Identification are supported. Otherwise, if the CPUs on your
platform cannot support one or both of these two CPU features,
you need to select other values or event disable branch
protection with setting value to 0. The detailed information
can be found in the document ARM-TFA-BUILD-OPTIONS [https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/build-options.html#common-build-options].
To be able to leverage and build this feature, two additional
flags needs to be enabled: CTX_INCLUDE_PAUTH_REGS=1 and
ARM_ARCH_MINOR, we must pick the value for ARM_ARCH_MINOR based
on the CPU architecture version, e.g. when validate on QEMU
aarch64 with support Armv8.5 architecture, we set
ARM_ARCH_MINOR=5 for this case.

	DECRYPTION_SUPPORT=aes_gcm

	Select the authenticated decryption algorithm for firmware.

	ENCRYPT_BL31=1

	Enable encryption for BL31 firmware.

	ENCRYPT_BL32=1

	Enable encryption for BL32 firmware.

	KEY_ALG=rsa / KEY_SIZE=4096

	Select the RSA algorithm for the PKCS keys and signing keys
and the key size is 4096. When the large key size (4096) is
used instead of the default key size of 2048, the product is
better protected.

	MEASURED_BOOT=1 / EVENT_LOG_LEVEL=10 / TPM_HASH_ALG

	Enables measured boot option MEASURED_BOOT=1 when a platform
supports TPM, we can emulate TPM with the tool swtpm on QEMU
platform, the details for enabling TPM on QEMU can be found
in the document QEMU-TPM [https://qemu.readthedocs.io/en/latest/specs/tpm.html]. Setting EVENT_LOG_LEVEL=10 for
only printing out TPM error log. TPM are used not only by TF-A
but also by bootloaders and operating systems, usually the TPM
PCR bank algorithm is chosen by later bootloader, this is reason
why TF-A needs to explicitly specify TPM hash algorithm (e.g.
set TPM_HASH_ALG=sha256) which is chosed by later bootloader and
avoid incompatible issue between them.

	DRTM_SUPPORT=1

	Enable Dynamic Root of Trust for Measurement (DRTM).

As a reference, the TF-A recipe (QEMU-AARCH64-RECIPE [https://gitlab.com/Linaro/trustedsubstrate/meta-ts/-/blob/master/meta-trustedsubstrate/recipes-bsp/trusted-firmware-a/trusted-firmware-a-tsqemuarm64-secureboot.inc]) will enable
above insecure configurations for building booting images for QEMU
aarch64.

OP-TEE threat model

TBD

Invoking the TEE from a container

Containers can access the services provided by OP-TEE as long as:

	The OP-TEE client libraries (`optee-client` package) are installed in
the container

	The /dev/tee0 device is exposed to the container. With Docker, this is
achieved via --device /dev/tee0.
For example:

$ docker run -it --device /dev/tee0 <docker-image>

With such a configuration, only the client side is deployed in the container;
all the other components of the TEE are on the host. This includes:

	The OP-TEE kernel driver

	The MMC RPMB kernel driver (when OP-TEE’s `CFG_RPMB_FS` is enabled)

	The tee-supplicant process

	The files created in the host’s root filesystem by tee-supplicant to
provide storage for TEE persistent objects (when OP-TEE’s CFG_REE_FS
is enabled)

	The OP-TEE OS

	The Trusted Applications binaries (`*.ta` files)

	More complex configurations are possible, for example:
	
	Running tee-supplicant in a container. For this dev/teepriv0
has to be shared with the container via --device /dev/teepriv0. Only one
instance of the supplicant process may be running at any given time, so the
host instance has to be stopped before the container is started.

	Loading Trusted Application from a container or moving secure storage into
a container. tee-supplicant loads TAs from /lib/optee_armtz and
manages data files for secure storage in /data/tee by default. Therefore,
Docker bind mounts as well as host overlay mounts may be used to compose
things in a creative way.

U-Boot threat model

Unlike TF-A, U-Boot doesn’t give any offical documentation for handling
potential threats. Below lists insecure configurations which are
suggested by TRS for a production ready build.

U-Boot insecure configurations

	Insecure configurations

	Description

	CONFIG_TPM / CONFIG_EFI_TCG2_PROTOCOL / CONFIG_EFI_TCG2_PROTOCOL_EVENTLOG_SIZE

	Support TPM device on the platform, and enabling EFI_TCG2
configurations to produce EventLog with the TPM.

	CONFIG_TEE / CONFIG_RNG_OPTEE

	Enable driver for OP-TEE and create connection with secure
world’s OP-TEE firmware. Enable the OP-TEE based Random
Number Generator.

	CONFIG_EFI_RUNTIME_UPDATE_CAPSULE / CONFIG_EFI_CAPSULE_FIRMWARE / CONFIG_EFI_CAPSULE_FIRMWARE_RAW / CONFIG_EFI_CAPSULE_FIRMWARE_FIT

	With these configurations, we can update the U-Boot image using
the UEFI firmware management protocol (fmp). Enable
CONFIG_EFI_CAPSULE_FIRMWARE_FIT to support FIP image with using
the same protocol.

	CONFIG_CMD_EFICONFIG / CONFIG_CMD_BOOTMENU / CONFIG_AUTOBOOT_MENU_SHOW / CONFIG_BOOTMENU_DISABLE_UBOOT_CONSOLE

	Enable the first three configurations CONFIG_CMD_EFICONFIG and
CONFIG_CMD_BOOTMENU, U-Boot supports UEFI menu interface. After
enabled the configuration CONFIG_AUTOBOOT_MENU_SHOW, UEFI menu
can be shown up automatically. To only disply UEFI menu and
disable U-Boot console, we can enable the configuration
CONFIG_BOOTMENU_DISABLE_UBOOT_CONSOLE, in this case, we also
need to remove configuration CONFIG_PREBOOT so can avoid adding
boot manager entry in UEFI menu. Please see the details in the
document UBOOT-EFICONFIG [https://u-boot.readthedocs.io/en/latest/usage/cmd/eficonfig.html?highlight=EFICONFIG].

	CONFIG_SILENT_CONSOLE

	With configuration CONFIG_SILENT_CONSOLE and append “silent=1”
into the U-Boot environment (e.g. append it into the macro
CONFIG_EXTRA_ENV_SETTINGS), we can totally mute console for
U-Boot.

TPM threat model

TBD

Firmware TPM threat model

TBD

OCI

TBD

Links

	https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8320B.pdf

Features

The purpose of this page is to provide an overview of the essential features of
the Trusted Reference Stack (TRS), including it communication capabilities with
internal and external system components. This information aims to help readers
understand what TRS can offer in terms of its functionality and
interoperability.

	TRS features

	Secure Boot

	Measured Boot

	Authenticated Capsule Updates

	Disk encryption

	Virtualization

	Technologies and software

	TPM - Trusted Platform Module

	OP-TEE

	LUKS - Linux Unified Key Setup

	Xen

TRS features

Secure Boot

The firmware component of TRS unconditionally enables UEFI secure boot for all
supported platforms. There are some hardware requirements that will dictate how
Secure Boot is configured and enabled on your hardware. [UEFI] (section 32.3.6
Platform Firmware Key Storage Requirements) specifies that the Platform (PK)
and Key Exchange Keys (KEK) must be stored in tamper-resistant nonvolatile
storage. On Arm servers this is usually tackled by having a dedicated flash
which is only accessible by the secure world. Below is a table describing the
security features enabled by various hardware entities.

	Hardware

	UEFI Secure Boot

	Measured Boot

	RPMB [1]

	x

	x

	Discrete TPM

	
	x

	Flash in secure world

	x

	

In the embedded case, we typically don’t have a dedicated flash. What’s
becoming more common though is eMMC storage devices with an RPMB partition. The
eMMC storage devices are solid-state storage devices that leverage flash memory
technology to provide affordable and reliable storage for small electronic
devices. The eMMC device’s RPMB partition (Replay Protected Memory Block)
provides a secure storage area for sensitive data using a replay protection
mechanism to prevent unauthorized access and modification. Because of this,
the eMMC devices has become a key component for numerous electronic devices,
serving as dependable and secure data storage. Trusted Substrate will use that
RPMB partition to store all the EFI variables, if the device runs OP-TEE and
have a RPMB partition.

For devices without an RPMB, the UEFI public keys (PK, KEK, DB, etc.) will be
embedded in the firmware binary. The wrapping of these keys has its own
limitations and consequences. You have to make sure that the public keys are
immutable, something that is typically done by tying them to the Root of Trust
(ROT). To update any security-related EFI variables, you must update the
firmware. By default, you can only run binaries that have been digitally
signed. Other EFI variables that are not security-critical are stored in a file
within the ESP.

On the sequence diagram below, we see a typical scenario, describing the
different components involved when storing and retrieving data from a RPMB
partition.

[image: skinparam backgroundColor transparent skinparam sequenceMessageAlign center participant RPMB #ff5e13 participant Supplicant #0093a6 participant "U-Boot" as Uboot #0093a6 participant "TF-A (opteed)" as TFA #CE5756 participant "OP-TEE" as OPTEE #6b8724 participant "OP-TEE PTA" as PTA #6b8724 participant StMM as Stmm #7773cf Uboot --> TFA: TEEC_InvokeCommand TFA --> OPTEE: OP-TEE message PTA --> Stmm: MM buffer note over OPTEE,PTA #cccc00: PTA decapsulates the MM message\nfrom the OP-TEE message and\npasses it on to StMM Stmm --> OPTEE: FFA calls to OP-TEE Storage API for RPMB OPTEE --> Supplicant: RPC calls note over OPTEE,Uboot #cccc00: encrypt the data and send REE file operations to the supplicant through a series of RPC calls ...some time later... Supplicant --> RPMB: Read/Write to RPMB Supplicant --> Stmm: Read/Write finished Stmm --> PTA: MM buffer note over OPTEE,PTA #cccc00: PTA encapsulates the MM message,\ncreates an OP-TEE message and\npasses it on to OP-TEE OPTEE --> Uboot: OP-TEE response]

[1]
Requires OP-TEE support and a way to program the RPMB with a hardware unique
key (e.g a fuse, accessible only from the secure world). Setting EFI variables
at runtime (from the OS) is not supported as of now.

Secure boot limitations

The firmware automatically enables and disables UEFI Secure Boot based on the
existence of the Platform Key (PK). As a consequence, devices that embed
keys into the firmware binary will only be allowed to boot signed binaries and
you won’t be able to change the UEFI keys. See Building with your own certificates. On the other hand, devices that stores the variables in the RPMB
come with an uninitialized PK. As such the user must provide a PK during the
setup process in order to enable Secure Boot. The diagram below illustrates how
a device can be set up to have secure boot enabled or disabled.

[image: skinparam backgroundColor transparent usecase "Device runs OP-TEE?" as optee usecase "Device has RPMB?" as rpmb usecase "EFI variables in ESP.\nPK, KEK, db and dbx\nbuilt-in into the\nfirmware binary" as esp usecase "EFI variables in RPMB" as efirpmb usecase "PK provisioned?" as provpk usecase "Secure Boot is enabled" as sben usecase "Secure Boot is disabled" as sbend rpmb -d-> optee: yes rpmb -d-> esp: no optee -d-> efirpmb: yes optee -r-> esp: no efirpmb -d-> provpk provpk -> sben: yes esp -> sben provpk -l-> sbend: no]

Measured Boot

TRS has been designed to take advantage of TPM devices. The firmware part of TRS
supports the EFI TCG Protocol [https://trustedcomputinggroup.org/resource/tcg-efi-protocol-specification] as well as TCG PC Client Specific Platform
Firmware Profile Specification [https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification] and provides the building blocks the OS needs
for measured boot. During the first OS boot, it will automatically look for a
TPM device. If such a TPM device is present it will generate a random key,
encrypt the root filesystem and seal it against measurements found in PCR7
which holds the Secure Boot Policy and EFI keys used for UEFI Secure Boot.
Trusted Substrate supports discrete TPMs as well as firmware based TPMs. Which
one being used depends on the device capabilities and the software available.
The diagram below illustrates how a device ends up running with measured boot
enabled or disabled.

[image: skinparam backgroundColor transparent usecase "Device has\na discrete TPM?" as dtpm usecase "Device runs OP-TEE\nwith RPMB?" as optee usecase "fTPM Trusted\nApplication running?" as ftpm usecase "Measured Boot\nis enabled" as mben usecase "Measured Boot\nis disabled" as mbend dtpm -d-> mben: yes dtpm -d-> optee: no optee -d-> ftpm: yes ftpm -d-> mben: yes ftpm -d-> mbend: no]

Authenticated Capsule Updates

TRS can update the device firmware using Authenticated capsule updates on-disk [https://uefi.org/specs/UEFI/2.10/08_Services_Runtime_Services.html#delivery-of-capsules-via-file-on-mass-storage-device/]
A more detailed explanation is included in our Updating the firmware chapter,
but the sequence diagram that follows should provide enough information on how
the firmware is updated.

[image: skinparam backgroundColor transparent skinparam sequenceMessageAlign center participant "fwupd" as fwupd #ff5e13 participant "OS" as os #7773cf participant "Filesystem" as fs #CE5756 participant "U-Boot" as Uboot #6b8724 participant "Firmware location" as fw #0093a6 fwupd --> fwupd: fwupdtool Install /path/to/capsule.cab note over fwupd,fs #cccc00: Or copy the .capsule file manually to <ESP>\\EFI\\UpdateCapsule fwupd --> fs: Extract .cab and install capsule to <ESP>\\EFI\\UpdateCapsule fwupd --> os: Reboot note over fwupd,os #cccc00: Or reboot manually os --> Uboot: Reboot Uboot --> fs: Read capsule from the filesystem Uboot --> Uboot: Check the capsule signature for validity note over Uboot,fw #cccc00: U-Boot will reject and delete the capsule if authentication fails Uboot --> fw: Update the device firmware Uboot --> Uboot:Delete the capsule and reboot Uboot --> os: Boot with new firmware]

Disk encryption

The TRS build is by default configured to look for a TPM device. If it does, it
will generate a random password during the first boot, seal (see TPM sealing)
it against PCR7 which is the PCR meant to be used for the secure boot state.
Using this password, it will encrypt your root filesystem using
aes-xts-plain algorithm and block mode. This is something that will happen
regardless of TPM implementation. If on the other hand there is no TPM
available, then the devices will use a plaintext/unencrypted filesystem. This is
all explained in the graph below, where you can follow the steps from booting up
the device to the filesystem being mounted.

Important

	The encryption here will start from U-Boot, i.e, in TRS it’s currently
U-Boot that is the first component leveraging the TPM device. This is
something that might change in the future.

	It’s also worth to pay attention to the step that extends the PCR once more
to prohibit access to the password.

[image: skinparam backgroundColor transparent usecase "TPM exists?" as tpm rectangle "TPM boot" { rectangle "first boot" { usecase "first boot?" as firstboot usecase "generate and\nseal password" as genseal usecase "encrypt filesystem" as encrypt } rectangle "Subsequent boots" { usecase "Unseal OK?" as unseal usecase "Decrypt filesystem" as decrypt usecase "Reboot device" as reboot } } rectangle "Every boot" { usecase "Use plaintext\nfilesystem" as plaintext } usecase "extend PCR to\nprohibit further\naccess to the\npassword" as extend usecase "Mount root\nfilesystem" as mount tpm -d-> firstboot: yes note right of tpm : Any TPM, discrete\nSwTPM or fTPM tpm -d-> plaintext: no firstboot -d-> genseal: yes firstboot -d-> unseal: no unseal -d-> decrypt: yes decrypt -d-> extend unseal -d-> reboot: no genseal -d-> encrypt encrypt -d-> extend extend -d-> mount plaintext -d-> mount]

To get an idea of the components involved, please have a look at the sequence
diagram below showing the call flow between the components involved when setting
up disk encryption in TRS using a TPM device.

[image: skinparam backgroundColor transparent skinparam sequenceMessageAlign center participant "(f)TPM" as TPM #6b8724 participant RPMB #ff5e13 participant Supplicant #ff5e13 participant "U-Boot" as Uboot #0093a6 participant "Linux Kernel" as kernel #7773cf participant "initramfs" as initramfs #CE5756 participant "rootfs" as rootfs #CE5756 Uboot --> initramfs: Measure firmware OS-loader\n and OS to PCRs0-9 ||| note over RPMB, Supplicant #cccc00: If a fTPM is used, OP-TEE \nwith tee-supplicant is\nrequired to store data to\nthe RPMB partition ||| initramfs --> TPM: If secure boot enabled, then on the first boot,\nseal the encryption password\nagainst PCRs 7\n\nOn subsequent boots, unseal the password ||| initramfs -> rootfs: If secure boot enabled, then on the first boot,\ncreate a LUKS volume,\nencrypt and mount roots.\n\nOn subsequent boots,\ndecrypt and mount rootfs. ||| initramfs --> reboot: reboot if decryption\n failed |||]

Virtualization

So far, TRS uses Xen as the Hypervisor for Virtualization use cases. When Xen is
enabled, the GRUB menu provides an entry TRS Xen (if supported) making it
possible to boot the Xen hypervisor. What you will see is something similar to
the image below.

[image: GRUB menu for Xen booting]
Xen hypervisors’ EFI program and configuration file (xen.cfg) both are
located in the root folder of boot partition. The configuration file contains
settings for Xens’ log levels when it comes debugging, it also contains the path
to the Linux kernel image, the Linux kernel command line, etc. The Xen
hypervisor parses the configuration file and boots Linux kernel image.

Note, the Xen hypervisor doesn’t load initial ramdisk, this is different from
the boot flow in bare metal mode which loads both the initial ramdisk as well as
the Linux kernel image.

SPDX-License-Identifier: MIT

[global]
default=xen

[xen]
options=noreboot dom0_mem=4096M bootscrub=0 iommu=on loglvl=error guest_loglvl=error
kernel=Image console=hvc0 earlycon=xenboot rootwait root=PARTUUID=f3374295-b635-44af-90b6-3f65ded2e2e4

After a booting up the system successfully, we can use the command xl list
to list Xen domains. The Xen Dom0 with naming Domain-0 is created by
default and it will look like this:

root@trs-qemuarm64:~# xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 4096 32 r----- 63.2

The goal of TRS is to support both Dom0 and DomU with the same root
filesystem image. However, if Xen Dom0 automatically boot up Xen DomU
from the root filesystem, Xen DomU will automatically boot the next level’s
Xen DomU, and so on, causing a nesting issue. For this reason, the TRS root
file system does not contain anything for Xen DomU. To deploy a virtual
machine for Xen DomU, the procedures outlined below must be followed.
Firstly, you need to create a virtual machine configuration file
ewaol-guest-vm1.cfg:

Copyright (c) 2022, Arm Limited.
#
SPDX-License-Identifier: MIT

name = "ewaol-guest-vm1"
memory = 6144
vcpus = 4
extra = " earlyprintk=xenboot console=hvc0 rw"
root = "/dev/xvda2"
kernel = "/boot/Image"
disk = ['format=qcow2, vdev=xvda, access=rw, backendtype=qdisk, target=/usr/share/guest-vms1/trs-vm-image.rootfs.wic.qcow2']
vif = ['script=vif-bridge,bridge=xenbr0']

The configuration file ewaol-guest-vm1.cfg can be saved into the folder
/etc/xen/auto/ in order for the virtual machine to be launched automatically
upon subsequent booting. After that, we need to copy TRS root file system image
to target. In below example, we firstly create a folder
/usr/share/guest-vms1/ on the target:

root@trs-qemuarm64:~# mkdir -p /usr/share/guest-vms1/

Then we copy TRS’s qcow2 image from the host to the target, please replace
<IP_ADDRESS> with your target’s IP address.

$ cd trs-workspace/build/tmp_trs-qemuarm64/deploy/images/trs-qemuarm64
$ scp trs-image-trs-qemuarm64.wic.qcow2 root@<IP_ADDRESS>:/usr/share/guest-vms1/trs-vm-image.rootfs.wic.qcow2

Now we need to copy kernel image, the virtual machine can reuse the same kernel
image with the Xen Dom0 which has been already placed in /boot/Image. Now
we must copy the kernel image. The virtual machine can use the kernel image
already stored in /boot/Image for the Xen Dom0.
With the previous preparations, Xen DomU is prepared to run the virtual
machine. With the command shown here, we can create the VM:

root@trs-qemuarm64:~# xl create /etc/xen/auto/ewaol-guest-vm1.cfg

After the VM has been created, we can list all Xen domains:

root@trs-qemuarm64:~# xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 4096 32 r----- 63.2
ewaol-guest-vm1 1 6143 4 r----- 4.5

We can see a new domain ewaol-guest-vm1 running in Xen DomU (ID is 1
with 4 virtual CPUs). To access Xen’s DomU console, you can use the command
xl console followed by a domain name, as exemplified here:

root@trs-qemuarm64:~# xl console ewaol-guest-vm1

To leave the DomU console and return to Dom0, you can press ctrl-[.

Known Xen issues with TRS

	Platforms: Currently Xen hypervisor is only supported for ADLink AVA platform.

	Images: The Xen hypervisor loads kernel image but it doesn’t load initial
ramdisk.

	TPM support: Dom0 currently does not support TPM. If the system runs
into the normal booting flow with GRUB menu entry TRS, the root file
system image will be encrypted with TPM; afterwards when we switch back to
Xen, it will not be possible to reuse the root file system image due to Xen
not supporting TPM at the current stage.

Technologies and software

This section intends to give a high level overview of the key technologies and
software that is used in TRS. It is meant to be an introduction rather than an
full description.

TPM - Trusted Platform Module

A TPM (Trusted Platform Module) device is a hardware-based security device that
offers cryptographic operations, secure storage, disc encryption and attestation
services. Its main objective is to ensure the integrity of key system components
and secure sensitive data from unauthorized access in order to establish a
secure foundation for a computing system. A unique feature that TPM devices
offer is the so called Platform Configuration Registers (PCRs), which are used
to measure the system configuration and software. PCRs start zeroed out and can
only be reset with a system reboot. PCR’s can be extended by writing an
appending digest (typically SHA-1/256/384/512 for TPMv2) into the PCR. To store
a new value in a PCR, the existing value is extended with a new value as
follows:

PCR[N] = HASHalg(PCR[N] || ArgumentOfExtend)

TRS supports three different configurations, that is a real TPM hardware chip,
[fTPM] or [SWTPM] if using QEMU. On an API level, they’re all equivalent, but
the security and performance implications are different. The fTPM solution is
flexible in the sense that it runs as Trusted Application, so it’s easy to
change and update it if needed. From performance point of view, it’s faster
that a real TPM chip, since it’s running on a fully fledged Cortex-A core.
However, to be able to use the fTPM, the system must have reached a state where
OP-TEE is up and running, since that is where the code is running. The other
software based solution, SWTPM, is a piece of software that is started as a
separate binary and exposes itself via sockets. That makes it possible to use a
TPM device already from the first boot loader (if drivers exist!). Exactly how
that work can be found in the TPM and U-Boot blog post [https://www.linaro.org/blog/how-to-emulate-trusted-platform-module-in-qemu-with-u-boot]. A real, discrete TPM
chip will of course also be available directly from the boot. How to hand over
the ownership of the TPM between different execution environment and to ensure
that there are drivers capable of communicating with the TPM device is a
technical challenge shared between all setups. Another issue that needs to be
addresses is TPM impersonator, man-in-the-middle attacks. Something that real
TPM devices connected with I2C and SPI are susceptible to, see for example the
TPM Genie [https://github.com/nccgroup/TPMGenie/blob/master/docs/NCC_Group_Jeremy_Boone_TPM_Genie_Whitepaper.pdf] attack.

TPM sealing

TPM sealing is a technique that allows locking keys and data to a certain
PCR state. In other words, when we say that we “seal a key,” what we actually
mean is that after a certain number of PCR measurements, we take a key of our
choice and ask the TPM to store and lock it to that specific PCR state. The
only way to unlock the key once that has been completed is to ensure that we
obtain the same PCR in subsequent boots. Since the PCR measurements are based on
collision resistant cryptographic algorithms, it’s extremely unlikely to be able
to brute-force this schema. To this date, SHA-256 and higher isn’t susceptible
to brute-force attacks. Weaker algorithms such as MD5 and SHA-1 on the other
hand are no longer considered secure and shall not be used any longer. The
concepts described here with locking keys to PCR’s is the bare bone when it
comes to encrypting keys and other secrets during boot etc.

OP-TEE

OP-TEE [https://optee.readthedocs.io] is an open source TrustZone solution, a so called Trusted Execution
Environment (TEE) that makes it possible to run code and keep sensitive data
away from the normal OS environment. The OP-TEE solution is made up of code
running in a both secure and non-secure contexts. The secure side, is where the
main OP-TEE OS runs (at S-EL1) together with the Trusted Applications (at
S-EL0). On the non-secure side OP-TEE has a TEE driver that rely on the TEE
framework provided by Linux kernel. To support clients (normal Linux
applications), OP-TEE also provides a couple of libraries, giving API access to
TEE communication and features (libteec.so, tee-supplicant and a few
others). TRS uses OP-TEE for a number of reasons with the most notable ones
being:

	Implement and run [fTPM] if the hardware doesn’t have a discrete TPM.

	Store EFI variables when the device has a RPMB partition.

	Provide a Deterministic Random Bit Generator (DRBG [https://en.wikipedia.org/wiki/Pseudorandom_number_generator]) if the hardware doesn’t
provide a True Random Number Generator (TRNG [https://en.wikipedia.org/wiki/Hardware_random_number_generator]).

	Implement a PKCS#11 backend provider to PARSEC.

Conceptually the components interacting with OP-TEE in the TRS build can be seen
in the image below. The Features lane there indicates which exceptions
levels are involved in a certain use case. For example, “TEE: Secure Storage” is
all kept in (S)EL-0 and (S)EL-1.

[image: OP-TEE TRS component overview]
Note that this image is rather generic as depicted here. We have other areas
that could (and should) be added as well, for example SCMI, Xen,
FF-A, SwTPM to name a few. But perhaps it’s better to add them as
separate diagrams to avoid making the images too complex.

LUKS - Linux Unified Key Setup

Block devices, like filesystems and swap partitions, can be encrypted using the
disk encryption system called LUKS [https://en.wikipedia.org/wiki/Linux_Unified_Key_Setup]. Conceptually, LUKS protects the data by
leverage keyslots. Keyslots may include several kinds of keys, such as
passphrases, OpenPGP public keys, or X.509 certificates. Encryption is carried
out using a multi-layer technique. There are two versions of LUKS, with LUKS2
providing additional capabilities such robustness to header corruption and
default use of the Argon2 encryption algorithm.

Xen

Xen is an open-source type-1 or baremetal hypervisor that allows multiple
instances of the same or different operating systems to run on a single
machine. It is used in various applications targeting different environments,
including server and desktop and embedded. The Xen Project hypervisor has a
small memory footprint, is independent of operating systems it is running,
it isolates drivers and it also supports paravirtualization, a technique, that
allows multiple operating systems to share system resources more efficiently.
Paravirtualization improves performance and reduces overhead by enabling direct
communication between the guest operating system and the hypervisor.
Xen manages CPU, memory, and interrupts while running directly on the hardware.
The VM’s runs on top of the hypervisor. A specialized and more privileged VM,
called Dom0, comprises system services, device drivers and software to manage a
Xen-based system. Alongside with that, there are usually other guests running
as VM’s as well, we refer to those as DomU. For more details about the Xen
project, please have a lot at the Xen Project [https://xenproject.org].

Firmware - Trusted Substrate

	Trusted Substrate

	Hardware and Software
	Supported Platforms

	Build and install
	Getting the firmware

	Installing firmware

	Updating the firmware

	Configuration and OS booting
	Configuring UEFI variables

	Running a distro

	References

	Terms and abbreviations

Trusted Substrate

Trusted Substrate is a meta-layer in OpenEmbedded aimed towards board makers
who want to produce an Arm SystemReady [https://www.arm.com/architecture/system-architectures/systemready-certification-program]
(based on [EBBR])
compliant firmware and ensure a consistent behavior, tamper protection and
common features across platforms. In a nutshell TrustedSubstrate is building
firmware for devices which verifies the running software hasn’t been tampered
with. It does so by utilizing a well known set of standards.

	
	UEFI secure boot enabled by default
	
UEFI Secure Boot is a verification mechanism for ensuring that code
launched by a computer’s UEFI firmware is trusted. It is designed to
protect a system against malicious code being loaded and executed early
in the boot process, before the operating system has been loaded.

	
	Measured boot. With a discrete or firmware TPM
	
Measured Boot is a method where each of the software layers in the boot
sequence of the device , measures the next layer in the execution
order, and extends the value in a designated TPM PCR.
Measured boot further validates the boot process beyond Secure Boot.

	
	Dual banked firmware updates with rollback and bricking protection
	
Dual banked firmware updates provides protection to the firmware update
mechanism and shield the device against bricking as well as rollback
attacks.

Hardware and Software

	Supported Platforms
	Software Components

Supported Platforms

Trusted Substrate supports a variety of armv8 and armv7 boards. It’s important
to understand that the hardware characteristics dictate the supported features
as well as the level of the device security

Software Components

Generally the following software components are used to boot up the boards
and setup the chain of trust

	U-Boot [https://source.denx.de/u-boot/u-boot]

	OP-TEE [https://github.com/OP-TEE]

	TF-A [https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/]

	firmware TPM [https://github.com/microsoft/ms-tpm-20-ref]

	StandAloneMM from EDK2 [https://github.com/tianocore/edk2-platforms.git]

	SCP [https://github.com/ARM-software/SCP-firmware]

A high level overview of the boot chain looks will look like this

[image: object BL2 { U-Boot SPL or TF-A BL2 } object BL31 { Secure Monitor } object BL32 { OP-TEE fTPM StandAloneMM } object BL33 { U-Boot } object OS { OS with UEFI } BL2 --> BL31 BL2 --> BL32 BL2 --> BL33 BL33--> OS : UEFI Secure and Measured Boot]

Board Support

	QEMU (arm64)

	SynQuacer DeveloperBox [https://www.96boards.org/product/developerbox/]

	stm32mp157c-dk2 [https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html]

	stm32mp157c-ev1 [https://www.st.com/en/evaluation-tools/stm32mp157c-ev1.html]

	Rockpi4 [https://rockpi.org/rockpi4]

	Raspberry Pi4 [https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/]

	Xilinx kv260 starter kit [https://www.xilinx.com/products/som/kria/kv260-vision-starter-kit.html]

	Xilinx kv260 commercial [https://www.xilinx.com/products/som/kria/k26c-commercial.html]

Supported platform features

	Board

	FSBL

	Secure Boot

	Measured Boot

	Auth. Capsule Updates

	A/B updates

	QEMU

	TF-A

	Yes (Built-in vars)

	Yes

	No

	No

	DeveloperBox

	SCP + TF-A

	Yes (RPMB vars)

	Yes [fTPM]

	Yes

	WIP

	stm32mp157c-dk2

	TF-A

	Yes (Built-in vars)

	No

	No

	WIP

	stm32mp157c-ev1

	TF-A

	Yes (RPMB vars)

	No

	No

	WIP

	Rockpi4

	U-Boot SPL

	Yes (RPMB vars)

	Yes [fTPM]

	Yes

	No

	Raspberry Pi4

	Proprietary

	Yes (Built-in vars)

	Yes (needs SPI TPM)

	No

	No

	Xilinx kv260 starter kit

	U-Boot SPL

	Yes (Built-in vars)

	Yes

	Yes

	WIP

	Xilinx kv260 commercial

	U-Boot SPL

	Yes (Built-in vars)

	Yes

	Yes

	WIP

Build and install

	Getting the firmware
	Building from source

	Downloading board binaries

	Building with your own certificates

	Installing firmware
	QEMU arm64

	SynQuacer

	stm32mp157c dk2 or ev1

	rockpi4b

	Raspberry Pi4

	Xilinx KV260 AI Starter kit

	Updating the firmware
	Generating capsules

	Applying capsules from the command line

	Applying capsules from the OS

Getting the firmware

Building from source

Trusted Substrate is part of TRS, same steps apply to build from source as
documented at Initial setup.

Building meta-ts from source

By default make meta-ts will build firmware for all supported boards.

Warning

Since UEFI secure boot is enabled by default, boards that embed the UEFI
keys in the firmware binary will use the predefined Linaro certificates [https://gitlab.com/linaro/trustedsubstrate/meta-ts/-/tree/master/meta-trustedsubstrate/uefi-certificates].
Those boards will only be allowed to boot images signed by the
afforementioned Linaro certificates.

Building with your own certificates if you want to generate your own

Secure boot limitations for hardware limitations

Compiling for different boards is straightforward. To build only one board
firmware, pass TARGET to make with board name.

make TARGET=<BOARD> meta-ts

replace <BOARD> with:

	qemuarm64-secureboot

	synquacer

	stm32mp157c-dk2

	stm32mp157c-ev1

	rockpi4b

	rpi4

	zynqmp-kria-starter

The build output is in build/tmp_<BOARD>/deploy/images/

Hint

The build directory contains a lot of artifacts.
Look at Installing firmware for the per board files
you need

Downloading board binaries

We do produce daily builds for all the support boards
here [https://snapshots.linaro.org/components/ledge/ts/latest/]

Building with your own certificates

Warning

The default nightly builds we provide for devices that embed the keys are
using a private key that is available at
meta-trustedsubstrate/uefi-certificates/.
Anyone could sign and boot an EFI binary!
This is a mandatory step for a production firmware!

You need to generate the following keys:

	PK - Platform Key (Top-level key)

	KEK - Key Exchange Keys (Keys used to sign Signatures Database and
Forbidden Signatures Database updates)

	db - Signature Database (Contains keys and/or hashes of allowed EFI
binaries)

	dbx - Forbidden Signature Database (Contains keys and/or hashes of
forbidden EFI binaries)

Refer to Create certificates and keys for generating certificates and
create tar.gz archive with the .esl files

tar -czf uefi_certs.tgz db.esl dbx.esl KEK.esl PK.esl

Set up an environment variable UEFI_CERT_FILE: "<path>/uefi_certs.tgz" in
your local.conf or in ci/base.yml and recompile your firmware.

Note

This is only needed if the variables are built-in into the firmware binary.
You don’t need this if your board has an RPMB and OP-TEE support.

Installing firmware

If your hardware can boot of an SD-card meta-ts will generate a
WIC [https://www.yoctoproject.org/docs/2.4.2/dev-manual/dev-manual.html#creating-partitioned-images-using-wic]
image which you can dd to your target. Otherwise the firmware must be
flashed in a board specific way.

Since the firmware provides a [UEFI] interface you are free to choose the
distro you prefer.

QEMU arm64

QEMU just needs the build file containing all the firmware binaries.

Note

Files needed from build directory flash.bin

SynQuacer

The SynQuacer can’t boot from an SD card. You need to download and install the
firmware via xmodem. You can find detailed instructions
here [https://www.96boards.org/documentation/enterprise/developerbox/installation/board-recovery.md.html#update-using-serial-flasher]

The short version is flip DSW2-7 to enable the serial flasher, open your
minicom and use xmodem to send and update the files.

flash write cm3 -> Control-A S (send scp_romramfw_Release.bin)
flash rawwrite 0x600000 0x400000 (Control-A S -> fip.bin-synquacer)

After successful firmware update via serial flasher, power off the board,
set DSW2-7 to OFF, DSW3-3 and DSW3-4 to ON to enable OP-TEE and
TBB(Trusted Board Boot).

Note

Files needed from build directory scp_romramfw_release.bin, fip.bin

stm32mp157c dk2 or ev1

zcat ts-firmware-stm32mp157c-<ev1|dk2>.wic.gz > /dev/sdX

Note

Files needed from build directory ts-firmware-stm32mp157c-dk2.wic.gz or
ts-firmware-stm32mp157c-ev1.wic.gz

rockpi4b

zcat ts-firmware-rockpi4b.rootfs.wic.gz > /dev/sdX

Note

Files needed from build directory ts-firmware-rockpi4b.rootfs.wic.gz

Raspberry Pi4

zcat ts-firmware-rpi4.wic.gz > /dev/sdX

Note

Files needed from build directory ts-firmware-rpi4.wic.gz

Xilinx KV260 AI Starter kit

This board uses an internal SPI flash. You need to reset the board while
pressing FWUEN switch. This will launch an HTTP server at 192.168.0.111

Connect to the web Interface and update ImageA and ImageB

Note

Files needed from build directory ImageA.bin, ImageB.bin

Updating the firmware

Generating capsules

Capsules will automatically be built along with the firmware files.
You can find them in the boards build directory
build/tmp/deploy/images/<machine>/<machine>_fw.capsule

Applying capsules from the command line

	Copy the capsules in the ESP in the \EFI\UpdateCapsule directory

	Since the \EFI\UpdateCapsule is only checked for capsules within
the device that an active boot option is specified, make sure your
BootOrder variables are correctly set. Alternatively tou can set
BootNext variable with (assumin the capsule is on your mmc)
efidebug boot add -b 1001 cap mmc 1:1 EFI/UpdateCapsule && efidebug boot next 1001

	In U-Boot console issue
setenv -e -nv -bs -rt -v OsIndications =0x0000000000000004

	Reboot the board the capsules should be detected and applied.
Alternatively you can manually apply the capsules with
efidebug capsule disk-update using the U-Boot console.

If processing the capsule is sucessful you should see something like
the following in the log.

Applying capsule <capsule file> succeeded
Reboot after firmware update
resetting ...

More information about capsules and uefi in U-Boot can be found
U-Boot capsule update [https://u-boot.readthedocs.io/en/latest/develop/uefi/uefi.html]

Applying capsules from the OS

Capsule update-on-disk is supported via fwupd. When fwupd runs, it
will copy the firmware files to \EFI\UpdateCapsule of the ESP. Once the
board reboots capsule will be applied automatically.
More information can be found
here [https://github.com/fwupd/fwupd/blob/main/plugins/uefi-capsule/README.md]

TrustedSubstrate builds the required .cab files for all the platforms. You can
find them in the build directory as <machine name>_fw.cab

sudo fwupdtool install /path/to/<machine name>_fw.cab

Note

The EFI Spec mandates:
The directory EFIUpdateCapsule is checked for capsules only within the EFI
system partition on the device specified in the active boot option determined
by reference to BootNext variable or BootOrder variable processing.
The active Boot Variable is the variable with highest priority BootNext or
within BootOrder that refers to a device found to be present. Boot
variables in BootOrder but referring to devices not present are ignored
when determining active boot variable.

Since SetVariable at runtime is not yet supported, the only available option
is place the EFIUpdateCapsule within the ESP partition indicated by the
current BootOrder.

Configuration and OS booting

	Configuring UEFI variables
	Enabling Secure Boot

	Running a distro
	Download TRS

	Running TRS

Configuring UEFI variables

Boards that embed the UEFI keys in the U-Boot binary Secure boot limitations won’t allow you to change the EFI security related variables (PK,
KEK, db and dbx).

That category of boards comes with a predefined set of keys. For more details
look at Building with your own certificates.

Enabling Secure Boot

Secure Boot is enabled and disabled automatically based on the existence of a
Platform Key (PK). Enrolling one will enable UEFI Secure Boot and all the
EFI binaries must to be signed.

For more details look at [UEFI] (§ 32.3.1 Enrolling The Platform Key)

Create certificates and keys

Copy and run the script below. The .auth files you need can be found in efi_keys/
directory and the private certificates on priv_keys.

Note

This script is provided as sample.
Always backup your SSL certificates directory!

#!/bin/bash
sudo apt install efitools openssl uuid-runtime
set -e
CN='mytestCA'
OUT_DIR=priv_keys/
OUT_EFI_DIR=efi_keys/

mkdir $OUT_DIR -p
mkdir $OUT_EFI_DIR -p
if [! -e "$OUT_DIR/GUID.txt"]; then
 GUID=$(uuidgen)
 echo $GUID > $OUT_DIR/GUID.txt
else
 echo "Please remove '"$OUT_DIR"GUID.txt' to regenerate certs"
 echo "This will overwrite your private keys!"
 exit 1
fi

for cert in PK KEK db dbx; do
 # SSL certs
 openssl req -new -x509 -newkey rsa:2048 -subj "/CN=$CN $cert/" -keyout \
 $OUT_DIR/$cert.key -out $OUT_DIR/$cert.crt -days 3650 -nodes -sha256

 # EFI signature list certs
 # .esl certs can be concatenated if we want to support multiple signers
 cert-to-efi-sig-list -g $GUID $OUT_DIR/$cert.crt $OUT_EFI_DIR/$cert.esl
done
Empty PK to reset secure boot
rm -f $OUT_EFI_DIR/noPK.esl
touch $OUT_EFI_DIR/noPK.esl

sign-efi-sig-list -c $OUT_DIR/PK.crt -k $OUT_DIR/PK.key PK $OUT_EFI_DIR/noPK.esl $OUT_EFI_DIR/noPK.auth
sign-efi-sig-list -c $OUT_DIR/PK.crt -k $OUT_DIR/PK.key PK $OUT_EFI_DIR/PK.esl $OUT_EFI_DIR/PK.auth
sign-efi-sig-list -c $OUT_DIR/PK.crt -k $OUT_DIR/PK.key KEK $OUT_EFI_DIR/KEK.esl $OUT_EFI_DIR/KEK.auth
sign-efi-sig-list -c $OUT_DIR/KEK.crt -k $OUT_DIR/KEK.key db $OUT_EFI_DIR/db.esl $OUT_EFI_DIR/db.auth
sign-efi-sig-list -c $OUT_DIR/KEK.crt -k $OUT_DIR/KEK.key dbx $OUT_EFI_DIR/dbx.esl $OUT_EFI_DIR/dbx.auth
chmod 0600 $OUT_DIR/*.key

Enable Secure Boot

The commands below assume the keys are stored in the first partition of a usb
stick.

load usb 0:1 90000000 PK.auth && setenv -e -nv -bs -rt -at -i 90000000:$filesize PK
load usb 0:1 90000000 KEK.auth && setenv -e -nv -bs -rt -at -i 90000000:$filesize KEK
load usb 0:1 90000000 db.auth && setenv -e -nv -bs -rt -at -i 90000000:$filesize db
load usb 0:1 90000000 dbx.auth && setenv -e -nv -bs -rt -at -i 90000000:$filesize dbx

Disable Secure Boot

The commands below assume the keys are stored in the first partition of a usb
stick.

load usb 0:1 90000000 noPK.auth && setenv -e -nv -bs -rt -at -i 90000000:$filesize PK

Running a distro

Since the firmware provides a [UEFI] interface you are free to choose the
distro you prefer. However boards that embed the UEFI keys in the U-Boot binary
Secure boot limitations will only be able to boot signed binaries. Look
at Building with your own certificates if you want to build and your own
vertical distro and sign your binaries. If you use the precompiled firmware
binaries you can test that with our LEDGE Reference Platform.

Download TRS

Download a .wic.gz image from here [https://snapshots.linaro.org/components/ledge/oe/ledge-multi-armv8/latest/]
extract and rename it

gunzip ledge-iot-ledge-qemuarm64-<date>.rootfs.wic.gz
mv ledge-iot-ledge-qemuarm64-<date>.rootfs.wic ledge-iot.wic

Running TRS

Throughout the examples we will be using a USB disk. You can prepare one with

cat ledge-iot.wic > /dev/sdX

Note

LEDGE RP will automatically encrypt your root filesystems if measured
boot is enabled. Since it also enables SELinux by default it will reboot
once due to filesystem relabeling. Be patient this only happens on
first boot.

Before first boot you need to prepare the firmware EFI variables accordingly.
You only need to interrupt the bootloader and issue the efidebug
commands once.

Run on QEMU arm64

QEMU can provide a TPM implementation via Software TPM [https://github.com/stefanberger/swtpm]

[SWTPM] provides a memory mapped device which adheres to the
TCG TPM Interface Specification [https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientTPMInterfaceSpecification_TIS__1-3_27_03212013.pdf]

sudo apt install swtpm swtpm-tools

mkdir /tmp/mytpm1 -p

swtpm_setup --tpmstate dir:///tmp/mytpm1 --tpm2 --pcr-banks sha256
swtpm socket --tpmstate dir=/tmp/mytpm1 \
 --ctrl type=unixio,path=/tmp/mytpm1/swtpm-sock \
 --log level=0 --tpm2 -t -d

qemu-system-aarch64 -m 2048 -smp 2 -nographic -cpu cortex-a57 \
 -bios flash.bin -machine virt,secure=on \
 -drive id=os,if=none,file=ledge-iot.wic \
 -device virtio-blk-device,drive=os \
 -chardev socket,id=chrtpm,path=/tmp/mytpm1/swtpm-sock \
 -tpmdev emulator,id=tpm0,chardev=chrtpm \
 -device tpm-tis-device,tpmdev=tpm0

=> efidebug boot add -b 1 TRS virtio 0:1 efi/boot/bootaa64.efi -i virtio 0:1 ledge-initramfs.rootfs.cpio.gz -s 'console=ttyAMA0,115200 console=tty0 root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

Run on SynQuacer

=> efidebug boot add -b 1 TRS usb 0:1 efi/boot/bootaa64.efi -i usb 0:1 ledge-initramfs.rootfs.cpio.gz -s 'console=ttyAMA0,115200 console=tty0 root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

Run on stm32mp157c dk2 or ev1

=> efidebug boot add -b 1 TRS usb 0:1 efi/boot/bootarm.efi -i usb 0:1 ledge-initramfs.rootfs.cpio.gz -s 'console=ttySTM0,115200 console=tty0 root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

run on rockpi4b

=> efidebug boot add -b 1 TRS usb 0:1 efi/boot/bootaa64.efi -i usb 0:1 ledge-initramfs.rootfs.cpio.gz -s 'console=ttyS2,1500000 console=tty0 root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

Run on Raspberry Pi4

=> efidebug boot add -b 1 TRS usb 0:1 efi/boot/bootaa64.efi -i usb 0:1 ledge-initramfs.rootfs.cpio.gz -s 'console=ttyAMA0,115200 console=tty0 root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

Run on Xilinx KV260 AI Starter and Commercial kit

USB is not yet supported in U-Boot so use the mmc card instead.

=> efidebug boot add -b 1 TRS mmc 0:1 efi/boot/bootaa64.efi -i mmc 0:1 ledge-initramfs.rootfs.cpio.gz -s 'console=ttyPS1,115200 console=tty0 root=UUID=6091b3a4-ce08-3020-93a6-f755a22ef03b rootwait panic=60'
=> efidebug boot order 1
=> bootefi bootmgr

References

[UEFI]
Unified Extensable Firmware Interface Specification v2.9 [https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf],
February 2020, UEFI Forum [http://www.uefi.org]

[EBBR]
Embedded Base Boot Requirements v2.0.0-pre1 [https://arm-software.github.io/ebbr/],
January 2021, Arm Limited [http://arm.com]

[fTPM]
Firmware TPM [https://www.microsoft.com/en-us/research/publication/ftpm-software-implementation-tpm-chip/],
August 2016, Microsoft [http://www.microsoft.com]

[SWTPM]
Software TPM [https://github.com/stefanberger/swtpm]

Terms and abbreviations

This document uses the following terms and abbreviations.

	UEFI
	Unified Extensible Firmware Interface.

	EBBR
	Embedded Base Boot Requirements

	FSBL
	First stage boot loader

	TPM
	Trusted Platform Module

	PK
	Platform Key

	KEK
	Key Exhange Key

	db
	Signature Database

	dbx
	Forbidden Signature Database

	ESP
	EFI System Partition

	RPMB
	Replay Protected Memory Block

	TCG
	Trusted Computing Group

Codeline Management

TRS is a software development project that uses the release branch approach of
Yocto. We intend to base our work and use the latest version available from the
Yocto project. As mentioned before, the goal of the project is to create a
reliable, stable builds by leveraging stable upstream branches and thereby
reducing the risk of build and runtime issues.

Release process

By basing each release on a stable branches, the TRS project ensures
reproducibility and that releases should work for a foreseeable future. The
approach for making a release is as follows.

Create a manifest with stable commits: When a release is approaching, a
stable snapshot is created by writing all current commits to a temporary repo
xml file. This is achieved by running:

$ repo manifest -r -o my-release.xml

After this step we have well defined commits that won’t change as long as we
don’t re-run or edit the file. This serves as the basis for our release
testing.

Sanity testing: With the tagged manifests we start doing sanity testing.

Tag our own gits: After successful testing, we will tag the gits that we
control and own. The tag in question is the version in the form
vMAJOR.MINOR (from the Semantic Versioning [https://semver.org/]).

Create a release branch: Next, we create a release branch for TRS in the
trs-manifest.git repository, which will have the same name as the tag. This
is important, because we use the v<Major>.<Minor> reference differently when
checking out the release branch via repo. I.e., even though the names are the
same, they have distinct uses.

Replace commits with tags: With the tags also added and the release branch
created, we edit and update the default.xml file with the commits we got
when creating the stable commits and with the tags that we’ve created for the
gits that we own.

Update the release page: We also want to document the release. So, we need
to add a section about our release at the Changelog & Release Notes page.

Push tags and release branch: The final step of making a release is to (git)
push the tags and the branches to the upstream tree’s. Once done, the release
has been completed.

Release cadence

Until now releases has been a bit ad-hoc, but we plan to move to quarterly
release cadence and we’ll try to align them with the release of Trusted
Substrate.

Branches

We provide a Developer setup for TRS and we also provide Release build for TRS. Conceptually, the only difference between these is the tagging
and branching strategy. A developer build is what you get when checkout out the
repo manifest without providing any branch, i.e. -b is not used. The
developer build typically follows tip at upstream for the gits that we own and
control. Other gits that we use tends to be locked to a certain tag or a
commit. This is an intentional trade-off where we will have the ability to run
latest on our own gits, but still not be affected by other issues that perhaps
shows up in other gits.

In contrast, the release branches contain either commits or tags for all gits in
their respective manifest files. Therefore, stable branches never follow the tip
(which would make the non-stable).

So in summary, the main branch in TRS is for developers wanting to run the
latest available and the branches named v<Major>.<Minor> are the stable
branches.

Contributing

As an open source project, TRS welcomes contributions from anyone willing to
submit patches that conform to the licensing rules. The primary trs.git
repository uses the MIT license (see License). Also, for the majority of
the remaining TRS projects, changes should be provided directly to the upstream
source and not via TRS. TRS will adopt them when we update our manifest files to
use more recent versions of the sub-projects in TRS.

Contribution Guidelines

The way to contribute is pretty much the same as what is usually done in open
source projects. All patches are integrated via GitLab Merge Requests and
therefore, we do not accept *.patch patches sent via email. That’s because
we want to run various regression tests on the supported devices and these
tests are typically triggered by GitLab Merge Requests.

Forking

To be able to make a contribution, you need a GitLab account [https://gitlab.com/users/sign_up], hence start out
by creating that. Once that is completed, you should fork the git where you
intend to make changes. In the GitLab web interface you find a “Fork” button up
to the right when you’ve selected a git project. Once pressed, you’ll end up
with your own copy of the git at your own GitLab account.

Merge Request

After forking the git, you’ll clone the git from your own GitLab account, make
your changes to the project and once you’re done with the changes it’s time to
submit the patches. Before sending your code make sure changes have been tested
locally (make test), squashed patches into a patch series that makes sense,
written a good commit message etc. The merge request [https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html] itself can be done via
the GitLab web interface.

Commit messages

The subject line should explain what the patch does as precisely as possible. It
is usually prefixed with keywords indicating which part of the code is affected,
but not always. Avoid lines longer than 80 characters.

The commit description should give more details on what is changed and explain
why it is done. Indication on how to enable and use a particular feature can be
useful too. Try to limit line length to 72 characters, except when pasting some
error message (compiler diagnostic etc.). Long lines are allowed to accommodate
URLs, too (preferably use URLs in a Fixes: or Link: tag).

When it makes sense, we encourage to use other tags as well, such as:

	Tested-by: Teste R <teste@r.com>

	Acked-by: Acke R <acke@r.com>

	Suggested-by: Suggeste R <suggeste@r.com>

	Reported-by: Reporte R <reporte@r.com>

When citing a previous commit, whether it is in the text body or in a Fixes:
tag, always use the format as shown in the example below, that is 12 hexadecimal
digits prefix of the commit SHA1, followed by the commit subject in double
quotes and parentheses.

crypto: RSA driver fix

This fixes e1c70d7c88ab ("crypto: drivers: se050: fix rsa encrypt/decrypt")
...

Review feedback

It is very likely that you will get review comments from other TRS users asking
you to fix certain things etc. When fixing review comments, do:

	Add fixup patches on top of your existing branch. Do not squash and force
push while fixing review comments.

	When all comments have been addressed, just write a simple messages in the
comments field saying something like “All comments have been addressed”. By
doing so you will notify the maintainers that the fix might be ready for
review again.

	When all comments have been addressed, once again rebase and squash patches
into a patch series that make sense.

License

The software is provided under the MIT license (below).

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

SPDX Identifiers

Individual files contain the following tag instead of the full license text.

SPDX-License-Identifier: MIT

This enables machine processing of license information based on the SPDX
License Identifiers that are here available: http://spdx.org/licenses/

Changelog & Release Notes

v0.3 - 2023-04-19

	
	Xen support
	
	It’s now possible make a TRS build with Xen support. For more
information about it, check the Xen documentation page.

	
	Parsec
	
	Will now automatically be able to use OP-TEE PKCS#11 and fTPM services.

	
	SDK
	
	EWAOL distro feature and OpenEmbedded SDK package has been enabled.

v0.2 - 2023-03-07

	
	Stable CI
	
	xtest from OP-TEE (nightly and merge request)

	Measured boot tests (nightly and merge request)

	Secure boot (nightly and merge request)

	ACS 1.0 manually, except QEMU, where it is in CI.

	
	Platform support, meaning that they work with TRS
	
	QEMU

	RockPi4

	Synquacer

	
	New features
	
	Authenticated policies.

	Grub as part of the boot flow.

v0.1 - 2022-12-16

	Restructured the layer structure, by moving some layers up to the top level.

	QEMU is built by Yocto instead of relying on the host installed QEMU version.

	Changed repo release/branching strategy.

	Trusted Substrate documentation has moved into a subsection of TRS.

	Uses Trusted Substrate v0.2.

	Uses LEDGE Secure v0.1.

	Features enabled: LUKS disc encryption, Measured Boot, UEFI Secure Boot using
U-boot.

v0.1-beta - 2022-09-02

Note

This release is slightly flawed, mostly due to the fact that code was
checked out when the build was started and the code did not always track
stable commits.

	Builds TRS for the QEMU target.

	Boot cleanly up to the login prompt.

	Nothing tested.

	RockPi4 works, but not officially part of the v0.1-beta release.

Index

 D
 | E
 | F
 | K
 | P
 | R
 | T
 | U

D

 	
 	db

 	
 	dbx

E

 	
 	EBBR

 	
 	ESP

F

 	
 	FSBL

K

 	
 	KEK

P

 	
 	PK

R

 	
 	RPMB

T

 	
 	TCG

 	
 	TPM

U

 	
 	UEFI

 _images/plantuml-0e41bce7c4ac63fa622c10aed832eb1c96b71c12.png
Device has
a discrete TPM?

Device runs OP-TEE
with RPMB?
TPM Trusted

Application running?

Measured Boot Measured Boot
is disabled is enabled

_images/plantuml-166a9c9747a9b275b862c89a01938e1266c25162.png
zEm

|UEFI Secure and Measured Boot

05 with UEFI

_images/optee-trs.png

_images/plantuml-0cf23debaf195846d78de9bced4f6f8ac3cd00c8.png
ftool Install fpathftojcapsule.cab

| Fead capsule from the flesystem

Boot vith new firmware :

_images/plantuml-eade0da89288633e4f4eb29ba9102a9fd1b7a096.png
Device has RPMB?

EFlvariables in ESP.
PK, KEK, db and dbx
built-in into the:
firmware binary

Device runs OP-TEE?

EFI variables in RPMB

no es
Secure Boot is disabled PK provisioned? D Secure Boot is enabled

_images/plantuml-f7a45f685195d2444bf40d34cb125b326d540483.png
TEEC_InvokeComman

FFA calls to QP-TEE Storage API for RPMB

RPC calls

some time later

Read/Write to RPMB
| Readnur

Readwrite finishef

OP-TEE response

_images/plantuml-24366225131130b2841520231739430f5d20a622.png
EEE 83 g5
52t fg) I3
55 2%
§5g °%

-loader

firmware OS:
n on the first boot,

| Measure
seal the pass:

&
£5-5

ent boots, u

ju

g
¢

on subseq

_images/plantuml-bed697dc6a637ca5d4a44440764eb34126a90615.png
Every boot

Use plaintext
flesystem

first boot

Subsequent boots

generate and
seal password

encrypt filesystem

Decrypt filesystem Reboot device

extend PCR to
prohibit further
access to the
password

Mount root
filesystem

_images/user-guide-baremetal-arch-01.png
OCI Container Engne: Docker

Container Orchesiraton: k3

FIDO onboarding

Op-TEE

Parsec

OCI Container Engne: Podma

‘System Software
TPM technologies
Linux kemel
Discrete TPM
Bootoader
fimware TPM
Fimare
) TrustZone technologies
R T
| Tusied || Tusted
Qenu A RockPn, w | Y oo e
TeE o
Synauacer pr— — =

_images/user-guide-virtualization-arch-01.png
Domo: Privileged domain

DomU: Guest domain

Docker Podman Docker Podman
App App App App
App App App App

Linux tools and applications Linux tools and applications.

Podman, Docker, k3s, Parsec,
OP-TEE, test suites etc

Podman, Docker, k3s, Parsec,
OP-TEE, test suites etc

Feame Feam
o o
R
P —
[aw | [| [ew] [oo
[| [rmne] [oor | [=

_images/TRS-Figure-DockerMapping.png
/—\—m“

Iyocto_cacheldonrioads
$-/rs-workspacelbuididownioads(s)

S ~lyocto_cachelsstated-cache

$ ~Jtrs-workspace

([i

Default Working Dir

Docker TRS Dev Container
. Host (Ubuntu or other)

_images/grub-xen.png
GNU GRUB version 2.11

| TRS
|*TRS Xen (if supported) 1
|

Use the * and v keys to select which entry is highlighted.

Press enter to boot the selected 0S, ‘e' to edit the commands
before booting or ‘c' for a command-line. ESC to return previous
menu.

_images/introduction-high-level-overview-01.png
Application Workloads

Baremetal setup

Virtualization setup

OCI Container Engine: Docker

OCI Container Engine: Podman

Guestél Guesti
App | | App App App | |App . | App. App | |App . | App.
Containers Containers
Containers
Linux tools and applications

Container Orchestration: k3s OP-TEE
FIDO onboarding Parsec
Testsuites VM configuration Hypervisor technologies
QEMU
System Software Type-1: Hypenvisor: Xen
Linux kernel
Bootioader
TPM technologies TrustZone technologies
Fimuare Discrete TPM Trusted Trusted
Services Appi
fimware TPM
TeE sPM

_plantuml/0c/0cf23debaf195846d78de9bced4f6f8ac3cd00c8.png
ftool Install fpathftojcapsule.cab

| Fead capsule from the flesystem

Boot vith new firmware :

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Introduction

 		
 Goals and key properties

 		
 High-level overview

 		
 Firmware software components

 		
 Use-cases and features overview

 		
 TRS system architectures

 		
 Feedback and support

 		
 Maintainer(s)

 		
 User Guide

 		
 Initial setup

 		
 repo

 		
 Getting the source code

 		
 Getting the host packages

 		
 Initial sourcing

 		
 Tips and tricks

 		
 Targets

 		
 QEMU setup

 		
 Baremetal

 		
 Docker

 		
 Extend

 		
 Developer Manual

 		
 System Architectures

 		
 Baremetal architecture

 		
 Virtualization architecure

 		
 User Accounts

 		
 Build System

 		
 Target Platforms

 		
 Distribution Image Features

 		
 Yocto Layers

 		
 TRS recipes

 		
 Security

 		
 Hardening Flags

 		
 Threat models

 		
 Links

 		
 Features

 		
 TRS features

 		
 Technologies and software

 		
 Firmware - Trusted Substrate

 		
 Trusted Substrate

 		
 Hardware and Software

 		
 Supported Platforms

 		
 Build and install

 		
 Getting the firmware

 		
 Installing firmware

 		
 Updating the firmware

 		
 Configuration and OS booting

 		
 Configuring UEFI variables

 		
 Running a distro

 		
 References

 		
 Terms and abbreviations

 		
 Codeline Management

 		
 Release process

 		
 Release cadence

 		
 Branches

 		
 Contributing

 		
 Contribution Guidelines

 		
 Forking

 		
 Merge Request

 		
 Commit messages

 		
 License

 		
 SPDX Identifiers

 		
 Changelog & Release Notes

 		
 v0.3 - 2023-04-19

 		
 v0.2 - 2023-03-07

 		
 v0.1 - 2022-12-16

 		
 v0.1-beta - 2022-09-02

_plantuml/24/24366225131130b2841520231739430f5d20a622.png
EEE 83 g5
52t fg) I3
55 2%
§5g °%

-loader

firmware OS:
n on the first boot,

| Measure
seal the pass:

&
£5-5

ent boots, u

ju

g
¢

on subseq

_plantuml/be/bed697dc6a637ca5d4a44440764eb34126a90615.png
Every boot

Use plaintext
flesystem

first boot

Subsequent boots

generate and
seal password

encrypt filesystem

Decrypt filesystem Reboot device

extend PCR to
prohibit further
access to the
password

Mount root
filesystem

_plantuml/0e/0e41bce7c4ac63fa622c10aed832eb1c96b71c12.png
Device has
a discrete TPM?

Device runs OP-TEE
with RPMB?
TPM Trusted

Application running?

Measured Boot Measured Boot
is disabled is enabled

_plantuml/16/166a9c9747a9b275b862c89a01938e1266c25162.png
zEm

|UEFI Secure and Measured Boot

05 with UEFI

_plantuml/ea/eade0da89288633e4f4eb29ba9102a9fd1b7a096.png
Device has RPMB?

EFlvariables in ESP.
PK, KEK, db and dbx
built-in into the:
firmware binary

Device runs OP-TEE?

EFI variables in RPMB

no es
Secure Boot is disabled PK provisioned? D Secure Boot is enabled

_plantuml/f7/f7a45f685195d2444bf40d34cb125b326d540483.png
TEEC_InvokeComman

FFA calls to QP-TEE Storage API for RPMB

RPC calls

some time later

Read/Write to RPMB
| Readnur

Readwrite finishef

OP-TEE response

_static/file.png

_static/minus.png

_static/plus.png

